Abstract
Titanium dioxide (TiO2) has been extensively researched in a variety of domains, such as catalysis, photocatalysis and antibacterial agents. It has been discovered that TiO2 nanocomposite doped with gold are very effective in photo catalytically degrading organic pollutants. As a result, TiO2, Au@TiO2 and C-Au@TiO2 materials are an excellent choice for these applications. The crystal phase, particle size, and shape all effect the fascinating physical and chemical properties. TiO2. TiO2, Au@TiO2 and C-Au@TiO2 nanocomposites are prepared by co-precipitation method. XRD, FTIR, UV-DRS, FE-SEM and EDX studies are used to characterize these nanocomposite. Optical bandgap energy is reduced when carbon sphere and gold were loaded on to the TiO2 nano semiconductor. Its morphological, optical, and electrical characteristics make the as prepared C-Au@TiO2 will be the better choice in environmental applications. C-Au@TiO2 has low band gap energy when compared to Au@TiO2 and TiO2. It is an excellent catalyst for photocatalytic degradation of commercial Henna dye which conatians Lawsone as the maor chemical compound which need to de degradaed in the environmental pollution caused by it. The proposed C-Au@TiO2 catalyst degraded the commercial henna dye (Lawsone) with the good efficiency of 79 % in lesser time scale is reported for first time in this work.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: BK: concept supervision, KSR: data aquistion, PRN: analysing data, JA: checking.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: All the data are included in the manuscript.
References
1. Nogishi, N.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Chem. Lett. 1995, 841. https://doi.org/10.1016/S1010-6030(02)00434-3.Search in Google Scholar
2. Hoffamnn, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95 (1), 69–96. https://doi.org/10.1021/cr00033a004.95.Search in Google Scholar
3. Kamat, P. V.; Fedler, J. H., Eds., Nanocomposite and Nanostructured Films; Wiley-VCH: New York, 1998.Search in Google Scholar
4. Jalandhara, D.; Kumar, S.; Dalal, J.; Singh, G.; Kumar, S.; Badru, R.; Singh, Y.; Sharma, S. V.; Kaushal, S. Adv. Mater. 2025, 6, 641–657. https://doi.org/10.1039/d4ma01053a.Search in Google Scholar
5. Gaur, J.; Kumar, S.; Pal, M.; Kaur, H.; Badru, R.; Momoh, J.; Pal, R.; Kumar, S. Adv. Nanosci. Nanotechnol. 2023, 14, 035014.10.1088/2043-6262/acf28aSearch in Google Scholar
6. Kaushal, S.; Kaur, H.; Kumar, S.; Badru, R.; Mittal, S.; Singh, P. Novel Horizon: Smart TiO2/Sn (IV) SbP Nanocomposite with Enhanced Electrochemical and Photocatalytic Properties. Russ. J. Inorg. Chem. 2020, 65 (4), 616–625.10.1134/S0036023620040087Search in Google Scholar
7. Eniko, B.; Gabor, K.; Tamas, G.; Krisztian, N.; Egon, K.; Peter, B.; Lucian, B.; Zsolt, P.; Klara, H. Catal. Today 2018, 300, 28. https://doi.org/10.1016/j.cattod.2017.03.019.Search in Google Scholar
8. Anpo, M.; Ichihasi, Y.; Takeuchi, M.; Yamashita, H. Stud. Surf. Sci. Catal. 1999, 121, 305. https://doi.org/10.1016/S0167-2991(99)80084-6.Search in Google Scholar
9. Anpo, M.; Ichihasi, Y.; Takeuchi, M.; Yamashita, H. Res. Chem. Intermed. 1998, 24, 143. https://doi.org/10.1163/156856798X00735.Search in Google Scholar
10. Anpo, M.; Che, M. Adv. Catal. 1999, 44, 119. https://doi.org/10.1016/S0360-0564(08)60513-1.Search in Google Scholar
11. Li, X. Z.; Li, F. B. Environ. Sci. Technol. 2001, 35, 2381. https://doi.org/10.1021/es001752w.Search in Google Scholar PubMed
12. Subramanian, V.; Wolf, E.; Kamat, P. V. J. Phys. Chem. B 2001, 105, 11439. https://doi.org/10.1021/jp011118k.Search in Google Scholar
13. Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Andreeva, D.; Tabakova, T.; Ilieva, L.; Idakiev, V. Catal. Today 2002, 75, 169. https://doi.org/10.1016/S0920-5861(02)00060-3.Search in Google Scholar
14. Date, M.; Ichihashi, Y.; Yamashita, T.; Chiorino, A.; Boccuzzi, F.; Haruta, M. Catal. Today 2002, 75, 51.Search in Google Scholar
15. Guan, J.; Ma, N. Res. Pol. 2007, 36, 880–886. https://doi.org/10.1016/j.respol.2007.02.004.Search in Google Scholar
16. Primo, A.; Corma, A.; García, H. Phys. Chem. Chem. Phys. 2011, 13, 886–910. https://doi.org/10.1039/C0CP00917B.Search in Google Scholar PubMed
17. Haruta, M. Size- and Support-Dependency in the Catalysis of Gold. Catal. Today 1997, 36, 153–166. https://doi.org/10.1016/S0920-5861(96)00208-8.Search in Google Scholar
18. Khan, A. A. P.; Khana, A.; Rahmana, M. M.; Asiria, A. M.; Oves, M. Int. J. Biol. Macromol. 2017, 98, 256. https://doi.org/10.1016/j.ijbiomac.2017.02.005.Search in Google Scholar PubMed
19. Li, P.; Li, X.; Saravanan, R.; Li, C. M.; Leong, S. S. J. RSC Adv. 2012, 2, 4031. https://doi.org/10.1016/j.ijbiomac.2017.02.005.Search in Google Scholar
20. Khan, A. A. P.; Khan, A.; Rahman, M. M.; Asiri, A. M.; Oves, M. Int. J. Biol. Macromol. 2016, 89, 198. https://doi.org/10.1016/j.ijbiomac.2016.04.064.Search in Google Scholar PubMed
21. Islam, S.; Butolab, B. S.; Mohammad, F. RSC Adv. 2016, 6, 44232.10.1039/C6RA05799CSearch in Google Scholar
22. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarex, P. J. J. Nano Lett. 2012, 12, 4271. https://doi.org/10.1021/nl301934w.Search in Google Scholar PubMed
23. Diao, W. R.; Hu, Q. P.; Feng, S. S.; Li, W. Q.; Xu, J. G. J. Agric. Food Chem. 2013, 61, 6044. https://doi.org/10.1021/jf4007856.Search in Google Scholar PubMed
24. Dewanjee, S.; Kundu, M.; Maiti, A.; Majumdar, R.; Majumdar, A. Trop. J. Pharm. Res. 2007, 6, 773.10.4314/tjpr.v6i3.14658Search in Google Scholar
25. Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. J. Nanopart. Res. 2007, 9, 479.10.1007/s11051-006-9150-1Search in Google Scholar
26. Wang, Y.; Wan, J.; Miron, R. J.; Zhao, Y.; Zhang, Y. Nanoscale 2016, 8, 11143. https://doi.org/10.1039/C6NR01114D.Search in Google Scholar PubMed
27. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. Nanotechnology 2005, 16, 2346. https://doi.org/10.1088/0957-4484/16/10/059.Search in Google Scholar PubMed
28. Shoeib, T.; Siu, K. W. M.; Hopkinson, A. C. J. Phys. Chem. A 2002, 106, 6121.10.1021/jp013662zSearch in Google Scholar
29. Amjad, H. E. S.; Alan, P. N.; Hafid, A.-D.; Suki, P.; Neil, C.; Steven, Y. Deposition of Anatase on the Surface of Activated Carbon. Surf. Coat. Technol. 2004, 187, 284–92. https://doi.org/10.1016/j.surfcoat.2004.03.012.Search in Google Scholar
30. Liu, J. H.; Yang, R.; Li, S. M. Preparation and Application of Efficient TiO2/ACFs Photocatalyst. J. Environ. Sci. 2006, 18, 979–81. https://doi.org/10.1016/S1001-0742(06)60025-9.Search in Google Scholar PubMed
31. Lassoued, M. S.; Lassoued, A.; Ammar, S.; Gadri, A.; Salah, A. B.; García-Granda, S. Synthesis and Characterization of Co-Doped Nano-TiO2 Through Co-Precipitation Method for Photocatalytic Activity. J. Mater. Sci.: Mater. Electron. 2018, 29 (11), 8914–8922.10.1007/s10854-018-8910-xSearch in Google Scholar
32. Naveenkumar, R.; Karthikeyan, B.; Senthilvelan, S. Braz. J. Phys. 2024, 54, 170–191.10.1007/s13538-024-01543-6Search in Google Scholar
33. Karunakaran, C.; Anilkumar, P.; Gomathisankar, P. Chem. Cent. J. 2011, 5, 1–9. https://doi.org/10.1007/s11814-010-0503-1.Search in Google Scholar
34. Osonga, F. J.; Avedisian, A.; Sadik, O. A. ACS Omega 2019, 4, 6511–6520.10.1021/acsomega.8b02389Search in Google Scholar PubMed PubMed Central
35. Du, M.; Yang, L.; Wang, M.; Li, C.; Zhan, H. Int. J. Miner. Metall. Mater. 2024, 31, 1745–1751.10.1007/s12613-023-2807-2Search in Google Scholar
36. Xu, Q.; Liu, Z. Theor. Found. Chem. Eng. 2023, 57, 1610–1617. https://doi.org/10.1134/S0040579523330114.Search in Google Scholar
37. Kubelka, P.; Munk, F. Z. Tech. Phys. 1931, 12, 593–601.Search in Google Scholar
38. Kubelka, P. J. Opt. Soc. Am. 1948, 38, 448–457. https://doi.org/10.1364/JOSA.38.000448.Search in Google Scholar PubMed
39. Fuller, M. P.; Griffiths, P. R. Anal. Chem. 1978, 50, 1906–1910. https://doi.org/10.1021/ac50035a045.Search in Google Scholar
40. Ratchawong, S.; Wacharawichanant, S.; Tanodekaew, S. Mater. Sci. Forum 2020, 998, 96–101. https://doi.org/10.4028/www.scientific.net/MSF.998.96.Search in Google Scholar
41. Serafin, J.; Bujaldón, R.; Sreńscek-Nazzal, J.; Kałamaga, A.; Gomez, E.; Vendrell, X.; Serra, A. Chem. Eng. J. 2025, 169005. https://doi.org/10.1016/j.cej.2025.169005.Search in Google Scholar
42. Deng, H.; Xiao, P.; Yang, L.; Luo, J.; He, M.; Wang, P.; Jiang, B.; Xiao, B. J. Sol-Gel Sci. Technol. 2025, 1–12. https://doi.org/10.1007/s10971-025-06669-w.Search in Google Scholar
43. Phakathi, N. A.; Tichapondwa, S. M.; Chirwa, E. M. J. Photochem. Photobiol. A Chem. 2025, 462, 116252. https://doi.org/10.1016/j.jphotochem.2024.116252.Search in Google Scholar
44. El Mchaouri, M.; Mallah, S.; Abouhajjoub, D.; Boumya, W.; Elmoubarki, R.; Essadki, A.; Barka, N.; Elhalil, A. Tetrahedron Green Chem. 2025, 100084. https://doi.org/10.1016/j.tgchem.2025.100084.Search in Google Scholar
45. Naveenkumar, R.; Karthikeyan, B.; Senthilvelan, S. Biomass Convers. Biorefin. 2025, 15, 3571–3583. https://doi.org/10.1007/s13399-023-05231-4.Search in Google Scholar
46. Yue, Y.; Yue, X.; Tang, X.; Han, L.; Wang, J.; Wang, S.; Du, C. Heliyon 2024, 10, 30817–0829. https://doi.org/10.1016/j.heliyon.2024.e30817.Search in Google Scholar PubMed PubMed Central
47. Ling, Q.; Sun, J.; Zhou, Q. Preparation and Characterization of Visible-Light-Driven Titania Photocatalyst Co-Doped with Boron and Nitrogen. Appl. Surf. Sci. 2008, 254 (10), 3236–3241. https://doi.org/10.1016/j.apsusc.2007.11.001.Search in Google Scholar
48. Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Petrik, L. Preparation of Visible-Light Responsive N–F-Codoped TiO2 Photocatalyst by a Sol–Gel-Solvothermal Method. J. Photochem. Photobiol. A Chem. 2006, 184 (3), 282–288. https://doi.org/10.1016/j.jphotochem.2006.04.041.Search in Google Scholar
49. Wen, C.; Zhu, Y. J.; Kanbara, T.; Zhu, H. Z.; Xiao, C. F. Effects of I and F Codoped TiO2 on the Photocatalytic Degradation of Methylene Blue. Desalination 2009, 249 (2), 621–625. https://doi.org/10.1016/j.desal.2009.01.028.Search in Google Scholar
50. Yu, J.; Zhou, M.; Cheng, B.; Zhao, X. Preparation, Characterization and Photocatalytic Activity of in Situ N, S-Codoped TiO2 Powders. J. Mol. Catal. A: Chem. 2006, 246 (1-2), 176–184. https://doi.org/10.1016/j.molcata.2005.10.034.Search in Google Scholar
51. Yu, C.; Cai, D.; Yang, K.; Yu, J. C.; Zhou, Y.; Fan, C. Sol–Gel Derived S, I-Codoped Mesoporous TiO2 Photocatalyst with High Visible-Light Photocatalytic Activity. J. Phys. Chem. Solids 2010, 71 (9), 1337–1343. https://doi.org/10.1016/j.jpcs.2010.06.001.Search in Google Scholar
52. Noorimotlagh, Z.; Kazeminezhad, I.; Jaafarzadeh, N.; Ahmadi, M.; Ramezani, Z. Improved Performance of Immobilized TiO2 Under Visible Light for the Commercial Surfactant Degradation: Role of Carbon Doped TiO2 and Anatase/Rutile Ratio. Catal. Today 2020, 348, 277–289. https://doi.org/10.1016/j.cattod.2019.08.051.Search in Google Scholar
53. Ariza-Tarazona, M. C.; Villarreal-Chiu, J. F.; Hernández-López, J. M.; De la Rosa, J. R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E. I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard Mater. 2020, 395, 122632. https://doi.org/10.1016/j.jhazmat.2020.122632.Search in Google Scholar PubMed
54. Li, D.; Calebe, V. C.; Li, Y.; Liu, H.; Lei, Y. Interstitial N-Doped TiO2 for Photocatalytic Methylene Blue Degradation Under Visible Light Irradiation. Catalysts 2024, 14 (10), 681. https://doi.org/10.3390/catal14100681.Search in Google Scholar
55. Li, C.; Lin, S.; Zhang, W.; Qi, K. Enhanced Photocatalytic Degradation of Tetracycline by Mn, S Co-Doped TiO2 Under Visible-Light Irradiation. J. Photochem. Photobiol. A Chem. 2025, 467, 116423. https://doi.org/10.1016/j.jphotochem.2025.116423.Search in Google Scholar
56. Lin, C.; Gao, Y.; Zhang, J.; Xue, D.; Fang, H.; Tian, J.; Zhou, C.; Zhang, C.; Li, Y.; Li, H. GO/TiO2 Composites as a Highly Active Photocatalyst for the Degradation of Methyl Orange. J. Mater. Res. 2020, 35 (10), 1307–1315. https://doi.org/10.1557/jmr.2020.41.Search in Google Scholar
57. Junqi, L.; Zhanyun, G.; Yu, W.; Zhenfeng, Z. Three-Dimensional TiO2/Bi2WO6 Hierarchical Heterostructure with Enhanced Visible Photocatalytic Activity. Nano-Micro Lett. 2014, 9 (2), 65–68. https://doi.org/10.1049/mnl.2013.0546.Search in Google Scholar
© 2025 IUPAC & De Gruyter