Abstract
The tuneable properties of polyaniline (PAni) make it a versatile candidate to be applied as contaminant adsorbent for wastewater treatment. In this research, naturally occurring doping acids namely acetic acid, benzoic acid, citric acid, formic acid, and tartaric acid are used to replace conventional use of hydrochloric acid (HCl) to eradicate usage of toxic and corrosive mineral doping acid in PAni synthesis. The chemical structures of all doped PAni samples were confirmed by Fourier-Transform Infrared spectroscopy (FTIR). In addition, all the PAni samples were confirmed to be in the oxidation state of emeraldine salt through Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) analysis and through conductivity measurement using four-point probe resistivity meter. It was shown that naturally occurring acids doped-PAni samples showed conductivity of 0.0199–0.1553 S/cm while PAni doped with HCl measured a conductivity of 0.1915 S/cm. Also, naturally occurring acids-doped PAni samples recorded BET surface area of 15.55–24.95 m2/g while that of HCl recorded BET surface area of 16.37 m2/g. Among all the PAni samples doped with different naturally occurring acids, PAni-Benzoic exhibited the highest nickel (Ni) removal efficiency of 19.44 % compared to 12.67 % of PAni doped with HCl due to enhanced surface area from π–π interaction between benzoic acid and PAni chain.
Funding source: Tunku Abdul Rahman University of Management and Technology
Award Identifier / Grant number: UC/I/G2023-00125
Acknowledgments
The author would like to thank Tunku Abdul Rahman University of Management and Technology (TAR UMT) for the scholarship provided.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The work presented in this manuscript was supported by internal grant (UC/I/G2023-00125) provided by Tunku Abdul Rahman University of Management and Technology (TAR UMT).
-
Data availability: The data that support the findings of this study are available from the corresponding author, Phang, S. W., upon reasonable request.
References
1. Noman, E.; Al-Gheethi, A.; Saphira Radin Mohamed, R. M.; Al-Sahari, M.; Hossain, M. S.; Vo, D. V. N.; Naushad, M. Sustainable Approaches for Nickel Removal from Wastewater Using Bacterial Biomass and Nanocomposite Adsorbents: A Review. Chemosphere 2022, 291 (1), 132862. https://doi.org/10.1016/j.chemosphere.2021.132862.Search in Google Scholar PubMed
2. Baskar, S.; Sidhaarth, K. R. A.; Mangaleshwaran, L.; Lakkaboyana, S. K.; Trilaksana, H.; Kalla, R. M. N.; Lee, J.; Atanase, L. I.; Kazi, M.; Praveenkumar, S. Elimination of Nickel Ions in a Packed Column Using Clamshell Waste as an Adsorbent. Sci. Rep. 2025, 15, 32. https://doi.org/10.1038/s41598-024-82267-0.Search in Google Scholar PubMed PubMed Central
3. Kato, S.; Kansha, Y. Comprehensive Review of Industrial Wastewater Treatment Techniques. Environ. Sci. Pollut. Res. 2024, 31, 51064–51097. https://doi.org/10.1007/s11356-024-34584-0.Search in Google Scholar PubMed PubMed Central
4. Tejada-Tovar, C.; Villabona-Ortiz, A.; Gonzalez-Delgado, A. D. High-Efficiency Removal of Lead and Nickel Using Four Inert Dry Biomasses: Insights into the Adsorption Mechanisms. Materials 2023, 16 (13), 4884. https://doi.org/10.3390/ma16134884.Search in Google Scholar PubMed PubMed Central
5. Khan, M. I.; Almesfer, M. K.; Elkhaleefa, A.; Shigidi, I.; Shamim, M. Z.; Ali, I. H.; Rehan, M. Conductive Polymers and their Nanocomposites as Adsorbents in Environmental Application. Polymers (Basel) 2021, 13 (21), 3810. https://doi.org/10.3390/polym13213810.Search in Google Scholar PubMed PubMed Central
6. Samadi, A.; Xie, M.; Li, J.; Shon, H.; Zheng, C.; Zhao, S. Polyaniline-Based Adsorbents for Aqueous Pollutants Removal: A Review. Chem. Eng. J. 2021, 418, 129425. https://doi.org/10.1016/j.cej.2021.129425.Search in Google Scholar
7. Bednarczyk, K.; Matysiak, W.; Tański, T.; Janeczek, H.; Schab-Balcerzak, E.; Libera, M. Effect of Polyaniline Content and Protonating Dopants on Electroconductive Composites. Sci. Rep. 2021, 11, 7487. https://doi.org/10.1038/s41598-021-86950-4.Search in Google Scholar PubMed PubMed Central
8. Holze, R. Overoxidation of Intrinsically Conducting Polymers. Polymers 2022, 14 (8), 1584. https://doi.org/10.3390/polym14081584.Search in Google Scholar PubMed PubMed Central
9. Luo, Q.; Wu, X.; Wang, E.; Guo, C. Y. Compositing Nanostructured Polyaniline with Single-Walled Carbon Nanotubes for High Thermoelectric Performance. Int. J. Energy Res. 2023, 1, 6989497. https://doi.org/10.1155/2023/6989497.Search in Google Scholar
10. Latifah, U.; Salsabila, N. K.; Yudhoyono, G. Enhanced Conductive and Optical Properties of TiO2/PANI Composites Synthesized by In-Situ Chemical Oxidation Polymerization Route, J. Phys.: Conf. Ser. 2023, 2780 (2024), 012014. https://doi.org/10.1088/1742-6596/2780/1/012014.Search in Google Scholar
11. Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A. R. Polyaniline Synthesized by Different Dopants for Fluorene Detection via Photoluminescence Spectroscopy. Materials (Basel) 2021, 14 (23), 7382. https://doi.org/10.3390/ma14237382.Search in Google Scholar PubMed PubMed Central
12. Pasela, B. R.; Castillo, A. P.; Simon, R.; Pulido, M. T.; Mana-ay, H.; Abiquibil, M. R.; Montecillo, R.; Thumanu, K.; Tumacder, D.; Taaca, K. L. Synthesis and Characterization of Acetic Acid-Doped Polyaniline and Polyaniline-Chitosan Composite. Biomimetics (Basel) 2019, 4 (1), 15. https://doi.org/10.3390/biomimetics4010015.Search in Google Scholar PubMed PubMed Central
13. Trchova, M.; Jasenska, D.; Blaha, M.; Prokeš, J.; Stejskal, J. Conducting Polyaniline Prepared in the Solutions of Formic Acid: Does Functionalization with Carboxyl Groups Occur? Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2020, 235, 118300. https://doi.org/10.1016/j.saa.2020.118300.Search in Google Scholar PubMed
14. Im, S.; Kim, H. J.; Shin, K.; Jeong, H. Y.; Hong, W. G.; Kwon, K.; Hong, Y. J. Phytic Acid-Doped Cross-Linked Polyaniline Nanofibers for Electrochemical Supercapacitor Electrode Applications. J. Korean Phys. Soc. 2019, 74 (2), 145–153. https://doi.org/10.3938/jkps.74.145.Search in Google Scholar
15. Assem, H. D.; Donkor, M. E. K.; Tamakloe, R. Y.; Nkum, R. K. A Review of UV-vis on Polymers; Polyaniline (PANI) and its Nanocomposites. Eur. J. Appl. Sci. 2024, 12 (2), 322–346. https://doi.org/10.14738/aivp.122.16797.Search in Google Scholar
16. Nekrasov, A. A.; Ivanov, V. F.; Vannikov, A. V. Analysis of the Structure of Polyaniline Absorption Spectra Based on Spectroelectrochemical Data. J. Electroanal. Chem. 2000, 482, 11–17. https://doi.org/10.1016/S0022-0728(00)00005-X.Search in Google Scholar
17. Rangel-Olivares, F. R.; Arce-Estrada, E. M.; Cabrera-Sierra, R. Synthesis and Characterization of Polyaniline-based Polymer Nanocomposites as Anti-corrosion Coatings. Coatings 2021, 11 (6), 653. https://doi.org/10.3390/coatings11060653.Search in Google Scholar
18. Diggikar, R. S.; Deshmukh, S. P.; Thopate, T. S.; Kshirsagar, S. R. Performance of Polyaniline Nanofibers (PANI NFs) as PANI NFs-silver (Ag) Nanocomposites (NCs) for Energy Storage and Antibacterial Applications. ACS Omega 2019, 4, 5741–5749. https://doi.org/10.1021/acsomega.8b02834.Search in Google Scholar
19. Du, X.; Xu, Y.; Xiong, L.; Bai, Y.; Zhu, J.; Mao, S. Polyaniline with High Crystallinity Degree: Synthesis, Structure, and Electrochemical Properties. J. Appl. Polym. Sci. 2014, 131, 19. https://doi.org/10.1002/app.40827.Search in Google Scholar
20. Ong, J. Y.; Law, Z. J.; Pua, C. H.; Phang, S. W. Effect of Acid Dopants Towards Polyaniline Based Optical Sensor for Lead Detection. Polym. Sci. Series A 2021, 63, 485–492. https://doi.org/10.1134/S0965545X21050102.Search in Google Scholar
21. Shen, J.; Shahid, S.; Sarihan, A.; Patterson, D. A.; Emanuelsson, E. A. C. Effect of Polyacid Dopants on the Performance of Polyaniline Membranes in Organic Solvent Nanofiltration. Sep. Purif. Technol. 2018, 204, 336–344. https://doi.org/10.1016/j.seppur.2018.04.034.Search in Google Scholar
22. Andriianova, A. N.; Biglova, Y. N.; Mustafin, A. G. Effect of Structural Factors on the Physicochemical Properties of Functionalized Polyanilines. RSC Adv. 2020, 10, 7468–7491. https://doi.org/10.1039/C9RA08644G.Search in Google Scholar PubMed PubMed Central
23. Hao, J.; Wang, L.; Wang, X.; Wang, J.; He, M.; Zhang, X.; Wang, J.; Nie, L.; Li, J. Preparation, Modification and Antifouling Properties of Polyaniline Conductive Membranes for Water Treatment: A Comprehensive Review. Environ. Sci.: Water Res. Technol. 2024, 10, 105–127. https://doi.org/10.1039/D3EW00709J.Search in Google Scholar
24. Yin, C.; Gao, L.; Zhou, F.; Duan, G. Facile Synthesis of Polyaniline Nanotubes Using self-assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing. Polymers (Basel) 2017, 9 (10), 544. https://doi.org/10.3390/polym9100544.Search in Google Scholar PubMed PubMed Central
25. Dhand, C.; Das, M.; Sumana, G.; Srivastava, A. K.; Pandey, M. K.; Kim, C. G.; Datta, M.; Malhotra, B. D. Preparation, Characterization and Application of Polyaniline Nanospheres to Biosensing. Nanoscale 2010, 2, 747–754. https://doi.org/10.1039/B9NR00346K.Search in Google Scholar
26. Samadi, A.; Xie, M.; Li, J. L.; Shon, H.; Zheng, C.; Zhao, S. Polyaniline-Based Adsorbents for Aqueous Pollutants Removal: A Review. Chem. Eng. J. 2021, 418, 129425. https://doi.org/10.1016/j.cej.2021.129425.Search in Google Scholar
27. Wang, X.; Li, Q.; Yang, D.; An, X.; Qian, X. Phytic Acid Doped Polyaniline as a Binding Coating Promoting Growth of Prussian Blue on Cotton Fibers for Adsorption of Copper Ions. Coatings 2022, 12 (2), 138. https://doi.org/10.3390/coatings12020138.Search in Google Scholar
28. Isik Yi̇gi̇t, K.; Sen Gursoy, S. Nickel and Copper Removal from Aqueous Media Using Polyaniline/Sugar Beet Pulp (PANI/SBP) Composite. Akademik Gida 2020, 18 (4), 357–366. https://doi.org/10.24323/akademik-gida.850843.Search in Google Scholar
© 2025 IUPAC & De Gruyter