Home Physical Sciences pH-responsive LDH-palmitic acid nanohybrids for controlled drug delivery
Article
Licensed
Unlicensed Requires Authentication

pH-responsive LDH-palmitic acid nanohybrids for controlled drug delivery

  • Alsya Haneeza Mohd Shah , Amran Ahmad , Nur Nadia Dzulkifli , Hamizah Mohd Zaki , Is Fatimah , Vadym Kovalenko and Sheikh Ahmad Izaddin Sheikh Mohd Ghazali ORCID logo EMAIL logo
Published/Copyright: January 7, 2026

Abstract

An effective drug delivery system enhances bioavailability to improve therapeutic outcomes. Incomplete drug administration can reduce effectiveness, requiring higher or more frequent doses. This study focuses on developing nnanocomposites that use layered double hydroxides (LDHs) as drug carriers to improve bioavailability. Zinc-aluminium (ZnAl-LDH) and calcium-aluminium (CaAl-LDH) LDHs were synthesised, and palmitic acid (PA) was intercalated into these structures using the co-precipitation method, forming ZnAl-LDH-PA and CaAl-LDH-PA nanocomposites. PXRD analysis confirmed successful intercalation, with increased interlayer spacing from 8.60 Å to 15.21 Å for 0.05 M CaAl-LDH-PA and from 8.92 Å to 14.35 Å for 0.2 M ZnAl-LDH-PA. FTIR spectroscopy further validated PA incorporation by showing the absence of nitrate peaks at 1347 cm−1 and the presence of asymmetrical and symmetrical COOˉ stretching vibrations in the 1540 to 1577 cm−1 range. Controlled release studies in simulated physiological media showed pH-responsive behaviour: CaAl-LDH-PA achieved sustained release of 75 % at pH 4.8, whereas ZnAl-LDH-PA displayed prolonged release at pH 7.4 (62 %). These findings demonstrate the potential of ZnAl- and CaAl-LDH nanohybrids as effective pH-responsive carriers for enhanced bioavailability.


Corresponding author: Sheikh Ahmad Izaddin Sheikh Mohd Ghazali, Material, Inorganic and Oleochemistry (MaterInoleo) Research Group, School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 72000 Kuala Pilah, Negeri Sembilan, Malaysia, e-mail:
Article note: A collection of articles based on contributions from the 50th IUPAC World Chemistry Congress held from July 14 to 19, 2025, in Kuala Lumpur, Malaysia and organized by the Institut Kimia Malaysia (IKM).

Funding source: Fundamental Research Grant Scheme, Malaysia

Award Identifier / Grant number: This study was funded by the Ministry of Higher Ed

Acknowledgments

The authors gratefully acknowledge the support provided by Universiti Teknologi MARA (UiTM), Malaysia, for the research facilities and institutional assistance throughout the course of this work.

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: The authors acknowledge the use of generative AItools (e.g., QuillBot) in the for language editing and grammar correction. No content generationor data interpretation was performed by AI. The authorstake full responsibility for the content and conclusions of this work.

  5. Conflict of interest: No conflict.

  6. Research funding: This study was funded by the Ministry of Higher Education (MOHE), Malaysia, under the Fundamental Research Grant Scheme (FRGS) (Grant No. FRGS/1/2023/STG05/UITM/02/20).

  7. Data availability: Not applicable.

References

1. Sen, M. Nanocomposite Materials. In Nanotechnology and the Environment; Sen, M. Ed.; IntechOpen: London, United Kingdom, 2020.10.5772/intechopen.93047Search in Google Scholar

2. Izbudak, B.; Cecen, B.; Anaya, I.; Miri, A. K.; Bal-Ozturk, A.; Karaoz, E. Layered Double Hydroxide-Based Nanocomposite Scaffolds in Tissue Engineering Applications. RSC Adv. 2021, 11 (48), 30237–30252; https://doi.org/10.1039/d1ra03978d.Search in Google Scholar PubMed PubMed Central

3. Chaillot, D.; Bennici, S.; Brendlé, J. Layered Double Hydroxides and LDH-Derived Materials in Chosen Environmental Applications: A Review. Environ. Sci. Pollut. Res. 2021, 28 (19), 24375–24405; https://doi.org/10.1007/s11356-020-08498-6.Search in Google Scholar PubMed

4. Tang, L.; Xie, X.; Li, C.; Xu, Y.; Zhu, W.; Wang, L. Regulation of Structure and Anion-Exchange Performance of Layered Double Hydroxide: Function of the Metal Cation Composition of a Brucite-Like Layer. Materials 2022, 15 (22); https://doi.org/10.3390/ma15227983.Search in Google Scholar PubMed PubMed Central

5. Padmini, N.; Rashiya, N.; Sivakumar, N.; Kannan, N. D.; Manjuladevi, R.; Rajasekar, P.; Prabhu, N. M.; Selvakumar, G. In Vitro and in Vivo Efficacy of Methyl Oleate and Palmitic Acid Against ESBL Producing MDR Escherichia coli and Klebsiella pneumoniae. Microb. Pathog. 2020, 148; https://doi.org/10.1016/j.micpath.2020.104446.Search in Google Scholar PubMed

6. Mishra, G.; Dash, B.; Pandey, S. Layered Double Hydroxides: A Brief Review from Fundamentals to Application as Evolving Biomaterials. Appl. Clay Sci. 2018, 153, 172–186; https://doi.org/10.1016/j.clay.2017.12.021.Search in Google Scholar

7. Sarijo, S. H.; Ghazali, S. A. I. S. M.; Hussein, M. Z. Synthesis of Dual Herbicides-Intercalated Hydrotalcite-Like Nanohybrid Compound with Simultaneous Controlled Release Property. J. Porous Mater. 2015, 22 (2), 473–480; https://doi.org/10.1007/s10934-015-9916-x.Search in Google Scholar

8. Vrijens, B.; Pironet, A.; Tousset, E. The Importance of Assessing Drug Exposure and Medication Adherence in Evaluating Investigational Medications: Ensuring Validity and Reliability of Clinical Trial Results. Pharmaceut. Med. 2024, 38 (1), 9–18; https://doi.org/10.1007/s40290-023-00503-w.Search in Google Scholar PubMed PubMed Central

9. Salleh, N. M.; Mohsin, S. M. N.; Sarijo, S. H.; Ghazali, S. A. I. S. M. Synthesis and Physico-Chemical Properties of Zinc Layered Hydroxide-4-Chloro-2-Methylphenoxy Acetic Acid (ZMCPA) Nanocomposite. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 204 (1), 012012; https://doi.org/10.1088/1757-899x/204/1/012012.Search in Google Scholar

10. Alsya Haneeza, M. S.; Sheikh Ahmad Izaddin, S. G.; Md Norizan, N. E.; Jori Roslan, N.; Dzulkifli, N. N.; Mohd Zaki, H.; Shankar Biswas, H.; Fatimah, I.; Kovelenko, V. Design and Evaluation of Zinc-Aluminium Layered Double Hydroxide-Palmitic Acid Nanocomposite: Synthesis, Characterization and Antimicrobial Properties. Malays. J. Anal. Sci. 2025, 29 (3), 1304.Search in Google Scholar

11. Jadam, M. L.; Syed Mohamad, S. A.; Zaki, H. M.; Jubri, Z.; Sarijo, S. H. Antibacterial Activity and Physicochemical Characterization of Calcium-Aluminium-Ciprofloxacin-Layered Double Hydroxide. J. Drug Deliv. Sci. Technol. 2021, 62; https://doi.org/10.1016/j.jddst.2020.102314.Search in Google Scholar

12. Adam, N.; Mohd Ghazali, S. A. I. S.; Dzulkifli, N. N.; Hak, C. R. C.; Sarijo, S. H. Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid. Bull. Chem. React. Eng. Catal. 2019, 14 (1), 165–172.10.9767/bcrec.14.1.3328.165-172Search in Google Scholar

13. Timóteo, T. R. R.; Melo, C. G. D.; Danda, L. J. D. A.; Silva, L. C. P. B. B.; Fontes, D. A. F.; Silva, P. C. D.; Aguilera, C. S. B.; Siqueira, L. D. P.; Rolim, L. A.; Rolim Neto, P. J. Layered Double Hydroxides of CaAl: A Promising Drug Delivery System for Increased Dissolution Rate and Thermal Stability of Praziquantel. Appl. Clay Sci. 2019, 180; https://doi.org/10.1016/j.clay.2019.105197.Search in Google Scholar

14. Bohari, F. L.; Sheikh Mohd Ghazali, S. A. I.; Dzulkifli, N. N.; Baharin, S. N. A.; Fatimah, I.; Poddar, S. Studies on the Intercalation of Calcium-Aluminium Layered Double Hydroxide-MCPA and its Controlled Release Mechanism as a Potential Green Herbicide. Open Chem. 2023, 21 (1); https://doi.org/10.1515/chem-2022-0291.Search in Google Scholar

15. Ghlem, M. A. H.; Ahmed, M. A.; Dhahir, A. K. A.; Al-Khafaji, T. K. M. S.; Abdulkareem Thamer, S. Room Temperature NO2 Gas Sensor Based Mesoporous Zn/Al-Layered Double Hydroxide: The Effect of Molar Ratio. Mater. Lett. 2024, 376; https://doi.org/10.1016/j.matlet.2024.137280.Search in Google Scholar

16. Ma, Y.; Zhang, S.; Wang, Y.; Jiang, Z.; Fu, N.; Yang, Z.; Mao, Y. The Structure and Release Kinetics of Ca-Al Layered Double Hydroxide by Intercalating with Diclofenac Sodium. Nano 2020, 15 (3); https://doi.org/10.1142/s1793292020500289.Search in Google Scholar

17. Gu, X.; Liu, P.; Liu, C.; Peng, L.; He, H. A Novel form-stable Phase Change Material of Palmitic Acid-Carbonized Pepper Straw for Thermal Energy Storage. Mater. Lett. 2019, 248, 12–15; https://doi.org/10.1016/j.matlet.2019.03.130.Search in Google Scholar

18. Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y. Effect of Reaction Time and (Ca+Mg)/Al Molar Ratios on Crystallinity of Ca-Mg-Al Layered Double Hydroxide. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 107 (1); https://doi.org/10.1088/1757-899x/107/1/012025.Search in Google Scholar

19. Elhalil, A.; Farnane, M.; Machrouhi, A.; Mahjoubi, F. Z.; Elmoubarki, R.; Tounsadi, H.; Abdennouri, M.; Barka, N. Effects of Molar Ratio and Calcination Temperature on the Adsorption Performance of Zn/Al Layered Double Hydroxide Nanoparticles in the Removal of Pharmaceutical Pollutants. J. Sci.: Adv. Mater. Dev. 2018, 3 (2), 188–195; https://doi.org/10.1016/j.jsamd.2018.03.005.Search in Google Scholar

20. Fatimah, I.; Citradewi, P. W.; Iqbal, R. M.; Ghazali, S. A. I. S. M.; Yahya, A.; Purwiandono, G. Geopolymer from Tin Mining Tailings Waste Using Salacca Leaves Ash as Activator for Dyes and Peat Water. Adsorpt. S. Afr. J. Chem. Eng. 2023, 43, 257–265; https://doi.org/10.1016/j.sajce.2022.11.008.Search in Google Scholar

21. Ahmad, R.; Hussein, M. Z.; Sarijo, S. H.; Wan Abdul Kadir, W. R.; Yun Hin, T.-Y. Synthesis and Characteristics of Valeric Acid-Zinc Layered Hydroxide Intercalation Material for Insect Pheromone Controlled Release Formulation. J. Mater. 2016, 2016, 1–9; https://doi.org/10.1155/2016/1285721.Search in Google Scholar

22. Khan, S. B.; Alamry, K. A.; Alyahyawi, N. A.; Asiri, A. M. Controlled Release of Organic–Inorganic Nanohybrid:Cefadroxil Intercalated Zn–Al-Layered Double Hydroxide. Int. J. Nanomed. 2018, 13, 3203–3222; https://doi.org/10.2147/ijn.s138840.Search in Google Scholar

23. Md Sandollah, N. A. S.; Sheikh Mohd Ghazali, S. A. I.; Wan Ibrahim, W. N.; Rusmin, R. Adsorption-Desorption Profile of Methylene Blue Dye on Raw and Acid Activated Kaolinite. Indones. J. Chem. 2020, 20 (4), 755–765; https://doi.org/10.22146/ijc.43552.Search in Google Scholar

24. Parello, M. L.; Rojas, R.; Giacomelli, C. E. Dissolution Kinetics and Mechanism of Mg-Al Layered Double Hydroxides: A Simple Approach to Describe Drug Release in Acid Media. J. Colloid Interface Sci. 2010, 351 (1), 134–139; https://doi.org/10.1016/j.jcis.2010.07.053.Search in Google Scholar PubMed

25. Mishra, G.; Dash, B.; Sethi, D.; Pandey, S.; Mishra, B. K. Orientation of Organic Anions in Zn-Al Layered Double Hydroxides with Enhanced Antibacterial Property. Environ. Eng. Sci. 2017, 34 (7), 516–527; https://doi.org/10.1089/ees.2016.0531.Search in Google Scholar

26. Chai, J.; Ma, Y.; Guo, T.; He, Y.; Wang, G.; Si, F.; Geng, J.; Qi, X.; Chang, G.; Ren, Z.; Yu, R.; Song, L.; Li, D. Assembled Fe3O4 Nanoparticles on Zn–Al LDH Nanosheets as a Biocompatible Drug Delivery Vehicle for pH-Responsive Drug Release and Enhanced Anticancer Activity. Appl. Clay Sci. 2022, 228; https://doi.org/10.1016/j.clay.2022.106630.Search in Google Scholar

27. Zammarano, M.; Li, Y.; Xie, M. Absorption of an Anionic Dye by Uncalcined and Calcined Layerd Double Hydroxides: A Case Study. J. Hazard. Mater. B 2006, 120 (1–3), 163–171.10.1016/j.jhazmat.2004.12.029Search in Google Scholar PubMed

28. Constantino, V. R. L.; Pinnavaia, T. J. Basic Properties of Mg2+1-xAl3+x Layered Double Intercalated by Carbonate, Hydroxide, Chloride and Sulphate Anions. Inorg. Chem. 2000, 34 (4), 883–892; https://doi.org/10.1021/ic00108a020.Search in Google Scholar

29. Zhao, H.; Nagy, K. L. Dodecyl Sulphate-Hydrotalcite Nanocomposites for Trapping Chlorinated Organic Pollutants in Water. J. Colloid Interface Sci. 2004, 274, 613–624; https://doi.org/10.1016/j.jcis.2004.03.055.Search in Google Scholar PubMed

30. Ahmed, A. A. A.; Talib, Z. A.; Bin Hussein, M. Z.; Zakaria, A. Zn-Al Layered Double Hydroxide Prepared at Different Molar Ratios: Preparation, Characterization, Optical and Dielectric Properties. J. Solid State Chem. 2012, 191, 271–278; https://doi.org/10.1016/j.jssc.2012.03.013.Search in Google Scholar

31. You, Y. W.; Zhao, H. T.; Vance, G. F. Adsorption of Dicamba (3,6-dichloro-2- Methoxy Benzoic Acid) in Aqueous Solution by Calcined-Layered Double Hydroxide. Appl. Clay Sci. 2002, 21, 217–226; https://doi.org/10.1016/s0169-1317(01)00102-8.Search in Google Scholar

32. Nunes, V. L. N.; Mulvaney, R. L.; Cantarutti, R. B.; Pinto, F. G.; Tronto, J. Improving Nitrate Fertilization by Encapsulating Zn-Al Layered Double Hydroxides in Alginate Beads. Nitrogen (Switzerland) 2020, 1 (2); https://doi.org/10.3390/nitrogen1020011.Search in Google Scholar

33. Bi, X.; Zhang, H.; Dou, L. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery. Pharmaceutics 2014, 6 (2), 298–332; https://doi.org/10.3390/pharmaceutics6020298.Search in Google Scholar PubMed PubMed Central

34. Chouhan, D.; Bharkatiya, M. Sustained Release Drug Delivery Systems: A Comprehensive Review. Asian J. Pharmaceutical Res. Dev. 2025, 13 (4), 173–177.Search in Google Scholar

Received: 2025-09-01
Accepted: 2025-10-23
Published Online: 2026-01-07

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0602/pdf
Scroll to top button