Abstract
New series of aromatic poly(ether ether ketone imide)s were synthesized from 1,3-bis-4-(4″-aminophenoxy benzoyl) benzene and aromatic dianhydrides such as BTDA, PMDA. BPDA, HFDA, OPDA, by two step polymerization method. Starting materials and difficulties in synthesis or processing, relatively few of these polymers achieved commercially viability. These poly(ether ether ketone imide)s were characterized by FT-IR, Solubility, Inherent viscosity, TGA, DSC and XRD. Inherent viscosities of these poly(ether ether ketone imide)s were in the range of 0.23–0.40 dL/g in DMF, indicating formation of moderate molecular weight of polymers. Currently there is lot of difficulties to synthesize processable polyimides due to hard, rigid, bulky nature it become more drastic to process polymers. We were synthesized polyimides showed good solubility in polar aprotic solvent due to incorporation of functional moiety such as ether, ketone, flexible linkages in the backbone of polymer chain rather than aromatic polyimides. poly(ether ether ketone imide)s showed good solubility in polar aprotic solvents such as N,N-dimethyl acetamide (DMAc), N-methyl 2-pyrrolidone (NMP), N,N,-dimethyl formamide (DMF), and Dimethyl sulphoxide (DMSO). These poly(ether ether ketone imide)s had glass transition temperatures; as determined by DSC, in the range of 241–270 °C. These polymers showed similar decomposition patterns and had no weight loss below 235 °C and temperatures for 10 % weight loss (T10) were in the range of 269–370 °C, indicating that these polymers showed good thermal stability and degradation at 800 °C indicating its sustainability. As per the TGA data char yield of these synthesized poly(ether ether ketone imide)s were very low char yield or residual weight of polyimides at 700 °C temperature indicates low limiting oxygen index value that is more flammable and sustainable polymers.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: Not applicable.
-
Research funding: Not applicable.
-
Data availability: Not applicables.
References
1. Zang, W.; Xu, H. J.; Yin, J.; Guo, X. X.; Ye, Y. F.; Fang, J. H.; Sui, Y.; Zhu, Z. K. J. App.Polym. Sci. 2001, 81, 2814.10.1002/app.1729Search in Google Scholar
2. Li, L.; Yin, J.; Sui, Y.; Xu, H. J.; Fang, J. H.; Zhu, Z. K.; Wang, Z. G. J. Polym. Sci. Polym. Chem. 2000, 38, 1943; https://doi.org/10.1002/(sici)1099-0518(20000601)38:11<1943::aid-pola30>3.3.co;2-#.10.1002/(SICI)1099-0518(20000601)38:11<1943::AID-POLA30>3.3.CO;2-#Search in Google Scholar
3. Kim, D. H.; Jung, J. C. Polym. Bull. 2003, 50, 3105.10.1016/S0098-8472(03)00026-1Search in Google Scholar
4. Lee, S. W.; Chae, B.; Lee, B.; Choi, W.; Kim, S. B.; Kim, S. I.; Park, S. M.; Jung, J.; Lee, K. H.; Ree, M. Chem. Mater. 2003, 15, 3105; https://doi.org/10.1021/cm034055m.Search in Google Scholar
5. Shizuo, M.; Kenji, F.; Minoru, N.; Ryuji, K.; Euro. Pat 0389092 BI. 1994.Search in Google Scholar
6. Lee, S. J.; Jung, J. C.; Lee, S. W.; Ree, M. J. Polym Sci. Polym. Chem. 2004, 42, 3130; https://doi.org/10.1002/pola.20165.Search in Google Scholar
7. Mittal, K. L. Polyimide Synthesis and Characterization and Applications; Plenum Press: New York, 1984; p. 1.Search in Google Scholar
8. Kiricheldorf, H. R. Progress in Polyimide Chemistry-I; Springerverlag Berlin Heidelberg, 1990.Search in Google Scholar
9. Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Polyimides; Blackie and Sons Ltd: Glasgrow London, 1990.10.1007/978-94-010-9661-4Search in Google Scholar
10. a) Tummala, R. R.; Rymaszewski, E.; Microelectronics, J. Packaging Handbook; Van. Nostrand Reinhold: New York, 1989.b) Croog, C. E.; Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Polyimides; Blackie and Sons Ltd: Glasgrow London, 1990.c) Gunger, A.; Smith, C. D. J. Polym. Prep. 1991, 32, 172.d) Harris, F. W.; Field, W. A.; Lanier, L. H. J. App. Polym. Sci. Polym. Symp. 1975, 26, 421.10.1007/978-1-4613-1069-3Search in Google Scholar
11. Chun, B. W. Polymer 1994, 35, 4203; https://doi.org/10.1016/0032-3861(94)90597-5.Search in Google Scholar
12. Yamada, M.; Kusana, M.; Matsumoto, T.; Kurosak, T. Macromolecules 1993, 26, 4961.Search in Google Scholar
13. Matsumoto, T.; Kurosaki, T. React Fun. Polym. 1996, 30, 55; https://doi.org/10.1016/1381-5148(96)00021-1.Search in Google Scholar
14. Volksen, W.; Cha, H. J.; Sanchez, M. I.; Yoon, D. Y. React. Funct. Polym. 1996, 30, 61; https://doi.org/10.1016/1381-5148(96)00024-7.Search in Google Scholar
15. Matsumoto, T.; Kurosaki, T. Macromolelecules 1997, 30, 993; https://doi.org/10.1021/ma961307e.Search in Google Scholar
16. Ictinos, T.; Sasaki, S.; Matsuura, T.; Nishi, S. J. Polym. Sci. Polym. Chem. 1990, 28, 323.10.1002/pola.1990.080280208Search in Google Scholar
17. Matsuura, T.; Hasuda, Y.; Nishi, S.; Yamada, N. Macromolecules 1991, 24, 5001; https://doi.org/10.1021/ma00018a004.Search in Google Scholar
18. a) Matsuura, T.; Ishizawa, M.; Hasude, Y.; Nishi, S. Macromolecules 1992, 25, 3540.b) Chung, I. S.; Kim, S. Y. Macromolecules 2000, 33, 3190; https://doi.org/10.1021/ma991561h.c) Wang, D. H.; Shen, Z.; Guo, M.; Cheng, S. Z. D.; Harris, F. W. Macromolecules 2007, 40, 889; https://doi.org/10.1021/ma061763v.Search in Google Scholar
19. Ho, B. C.; Lin, Y. S.; Lee, Y. D. J. Appl. Polym. Sci. 1994, 53, 1513; https://doi.org/10.1002/app.1994.070531113.Search in Google Scholar
20. Tamboli, A. B.; Bhorkade, R. G.; Kalshetti, B. S.; Ghodake, S. D.; Maldar, N. N. J. Macromol. Sci A Pure Appl. Chem. 2019, 160, 2475.Search in Google Scholar
21. Tamboli, A. B.; Maldar, N. N. J. Polym. Res. 2019, 26, 139; https://doi.org/10.1007/s10965-019-1799-0.Search in Google Scholar
22. Tamboli, A. B.; Maldar, N. N. J. Polym. Bull. 2020, 15, 456.Search in Google Scholar
23. Ziyu, W.; Jianjun, H.; Haixia, Y.; Shiyong, Y. J. Polymer. 2022, 14, 1269.Search in Google Scholar
© 2025 IUPAC & De Gruyter