Home Physical Sciences Carbon–carbon bond formation reaction overactive sites of heterogeneous catalysts: understanding the role of catalytic sites with reaction mechanism, performance, stability, and product selectivity
Article
Licensed
Unlicensed Requires Authentication

Carbon–carbon bond formation reaction overactive sites of heterogeneous catalysts: understanding the role of catalytic sites with reaction mechanism, performance, stability, and product selectivity

  • Hina Sarfraz , Saleh Shabanian , Samina Shabbir , Azmat Ullah Khan and Yousaf Khan ORCID logo EMAIL logo
Published/Copyright: November 5, 2025

Abstract

This paper provides an in-depth examination of carbon–carbon bond formation processes facilitated by heterogeneous catalysts. It highlights the crucial roles of active sites, structure-activity relationships (SARs), stability determinants, and classifications of catalysts. Active sites, characterized by distinct atomic arrangements, reduce the activation energy and enhance reaction selectivity and efficiency. The SAR framework elucidates the effect of structural characteristics, including pore size, surface area, crystal structure, and metal distribution, on catalytic performance. Stability challenges, such as heat deterioration, sintering, leaching, and poisoning, were analyzed. This indicates that resin-based catalysts exhibit greater durability and recyclability compared to metal oxides and silica-based systems. Comparative evaluations highlight the trade-offs between activity, stability, and industrial applicability, with resin-based catalysts exhibiting superiority in sustainable processes. The metal oxides offer durability in high-temperature applications. Case studies on methods such as benzene hydrogenation and carbon monoxide oxidation highlight the practical importance of catalyst design in these reactions. Emerging advances in nanocatalysis, green chemistry, and computer modeling are examined, highlighting their potential to enhance catalyst engineering. This study emphasizes the significance of understanding active site dynamics and structural influences in developing efficient, durable, and sustainable catalytic systems. The study facilitates substantial progress in chemical synthesis and the development of industrial catalysts.


Corresponding author: Yousaf Khan, Department of Chemistry, COMSATS University Islamabad, 45550-Islamabad, Pakistan, e-mail:

  1. Research ethics: Agreed and fulfil the research ethics.

  2. Informed consent: No consent required.

  3. Author contributions: HS: Writing, Conceptualization, Validation, S.S. editing, Formal analysis, S.S. Formal analysis, investigation, A.U.K. Formal Analysis. Y.K: Methodology, Data Curation, Conceptualization, Supervision.

  4. Use of Large Language Models, AI and Machine Learning Tools: No tool used.

  5. Conflict of interest: No conflict of interest.

  6. Research funding: None.

  7. Data availability: The data could be made available, if requested.

References

1. Friend, C. M.; Xu, B. Heterogeneous Catalysis: A Central Science for a Sustainable Future. Acc. Chem. Res. 2017, 50 (3), 517–521. https://doi.org/10.1021/acs.accounts.6b00510.Search in Google Scholar PubMed

2. Armor, J. N. A History of Industrial Catalysis. Catal. Today 2011, 163 (1), 3–9. https://doi.org/10.1016/j.cattod.2009.11.019.Search in Google Scholar

3. Zhang, X.; Hou, Y.; Ettelaie, R.; Guan, R.; Zhang, M.; Zhang, Y.; Yang, H. Pickering Emulsion-Derived Liquid–Solid Hybrid Catalyst for Bridging Homogeneous and Heterogeneous Catalysis. J. Am. Chem. Soc. 2019, 141 (13), 5220–5230. https://doi.org/10.1021/jacs.8b11860.Search in Google Scholar PubMed

4. Noodleman, L.; Lovell, T.; Han, W. G.; Li, J.; Himo, F. Quantum Chemical Studies of Intermediates and Reaction Pathways in Selected Enzymes and Catalytic Synthetic Systems. Chem. Rev. 2004, 104 (2), 459–508. https://doi.org/10.1021/cr020625a.Search in Google Scholar PubMed

5. Roduner, E. Understanding Catalysis. Chem. Soc. Rev. 2014, 43 (24), 8226–8239. https://doi.org/10.1039/c4cs00210e.Search in Google Scholar PubMed

6. Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.; Davey, K.; Qiao, S. Z. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. J. Am. Chem. Soc. 2021, 143 (20), 7819–7827. https://doi.org/10.1021/jacs.1c03135.Search in Google Scholar PubMed

7. Chaudhury, S.; Jangid, P.; Kolomeisky, A. B. Dynamics of Chemical Reactions on Single Nanocatalysts with Heterogeneous Active Sites. J. Chem. Phys. 2023, 158 (7). https://doi.org/10.1063/5.0137751.Search in Google Scholar PubMed

8. Schramm, V. L. Enzymatic Transition States and Transition State Analog Design. Annu. Rev. Biochem. 1998, 67 (1), 693–720. https://doi.org/10.1146/annurev.biochem.67.1.693.Search in Google Scholar PubMed

9. Funes-Ardoiz, I.; Schoenebeck, F. Established and Emerging Computational Tools to Study Homogeneous Catalysis – From Quantum Mechanics to Machine Learning. Chem 2020, 6 (8), 1904–1913. https://doi.org/10.1016/j.chempr.2020.07.008.Search in Google Scholar

10. Kumar, A.; Daw, P.; Milstein, D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem. Rev. 2021, 122 (1), 385–441. https://doi.org/10.1021/acs.chemrev.1c00412.Search in Google Scholar PubMed PubMed Central

11. Hayler, J. D.; Leahy, D. K.; Simmons, E. M. A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics 2018, 38 (1), 36–46. https://doi.org/10.1021/acs.organomet.8b00566.Search in Google Scholar

12. Deacy, A. C.; Gregory, G. L.; Sulley, G. S.; Chen, T. T. D.; Williams, C. K. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J. Am. Chem. Soc. 2021, 143 (27), 10021–10040. https://doi.org/10.1021/jacs.1c03250.Search in Google Scholar PubMed PubMed Central

13. Zhang, L.; Ren, Y.; Liu, W.; Wang, A.; Zhang, T. Single-Atom Catalyst: A Rising Star for Green Synthesis of Fine Chemicals. Natl. Sci. Rev. 2018, 5 (5), 653–672. https://doi.org/10.1093/nsr/nwy077.Search in Google Scholar

14. Božič, M.; Vivod, V.; Vogrinčič, R.; Ban, I.; Jakša, G.; Hribernik, S.; Fakin, D.; Kokol, V. Enhanced Catalytic Activity of the Surface Modified TiO2-MWCNT Nanocomposites Under Visible Light. J. Colloid Interface Sci. 2016, 465, 93–105. https://doi.org/10.1016/j.jcis.2015.11.051.Search in Google Scholar PubMed

15. Einfalt, T.; Goers, R.; Dinu, I. A.; Najer, A.; Spulber, M.; Onaca-Fischer, O.; Palivan, C. G. Stimuli-Triggered Activity of Nanoreactors by Biomimetic Engineering Polymer Membranes. Nano Lett. 2015, 15 (11), 7596–7603. https://doi.org/10.1021/acs.nanolett.5b03386.Search in Google Scholar PubMed

16. Hatta, A.; Jalil, A.; Hassan, N.; Hamid, M.; Bahari, M.; Aziz, M.; Alhassan, M.; Ibrahim, N.; Jusoh, N.; Hairom, N. A Comprehensive Review on the Advancements in Catalyst Regeneration Strategies for Enhanced Reactivity in CO Methanation. Mater. Today Chem. 2023, 33, 101743. https://doi.org/10.1016/j.mtchem.2023.101743.Search in Google Scholar

17. Han, H.; Bai, Z.; Zhang, T.; Wang, X.; Yang, X.; Ma, X.; Zhang, Y.; Yang, L.; Lu, J. Hierarchical Design and Development of Nanostructured Trifunctional Catalysts for Electrochemical Oxygen and Hydrogen Reactions. Nano energy 2019, 56, 724–732. https://doi.org/10.1016/j.nanoen.2018.12.012.Search in Google Scholar

18. Roslan, N. A.; Abidin, S. Z.; Ideris, A.; Vo, D. V. N. A Review on Glycerol Reforming Processes Over Ni-Based Catalyst for Hydrogen and Syngas Productions. Int. J. Hydrogen Energy 2020, 45 (36), 18466–18489. https://doi.org/10.1016/j.ijhydene.2019.08.211.Search in Google Scholar

19. Xie, J.; Dong, H.; Cao, X.; Li, Y. Computational Insights into Nitrogen Reduction Reaction Catalyzed by Transition Metal Doped Graphene: Comparative Investigations. Mater. Chem. Phys. 2020, 243, 122622. https://doi.org/10.1016/j.matchemphys.2020.122622.Search in Google Scholar

20. Huang, R.; Li, X.; Gao, W.; Zhang, X.; Liang, S.; Luo, M. Recent Advances in Photocatalytic Nitrogen Fixation: From Active Sites to Ammonia Quantification Methods. RSC Adv. 2021, 11 (24), 14844–14861. https://doi.org/10.1039/d0ra10439f.Search in Google Scholar PubMed PubMed Central

21. Van Der Zee, P.; Rietdijk, W.; Somhorst, P.; Endeman, H.; Gommers, D. A Systematic Review of Biomarkers Multivariately Associated with Acute Respiratory Distress Syndrome Development and Mortality. Crit. Care 2020, 24, 1–24. https://doi.org/10.1186/s13054-020-02913-7.Search in Google Scholar PubMed PubMed Central

22. Yang, Z.; Chen, Y.; Zhang, S.; Zhang, J. Identification and Understanding of Active Sites of Non-Noble Iron-Nitrogen-Carbon Catalysts for Oxygen Reduction Electrocatalysis. Adv. Funct. Mater. 2023, 33 (26), 2215185. https://doi.org/10.1002/adfm.202215185.Search in Google Scholar

23. Vogt, C.; Weckhuysen, B. M. The Concept of Active Site in Heterogeneous Catalysis. Nat. Rev. Chem. 2022, 6 (2), 89–111. https://doi.org/10.1038/s41570-021-00340-y.Search in Google Scholar PubMed

24. Pfisterer, J. H.; Liang, Y.; Schneider, O.; Bandarenka, A. S. Direct Instrumental Identification of Catalytically Active Surface Sites. Nature 2017, 549 (7670), 74–77. https://doi.org/10.1038/nature23661.Search in Google Scholar PubMed

25. Sedenho, G. C.; Colombo, R. N.; Crespilho, F. N. Insights from Enzymatic Catalysis: A Path Towards Bioinspired High-Performance Electrocatalysts. ChemCatChem 2023, 15 (15), e202300491. https://doi.org/10.1002/cctc.202300491.Search in Google Scholar

26. Wang, K.-Y.; Zhang, J.; Hsu, Y. C.; Lin, H.; Han, Z.; Pang, J.; Yang, Z.; Liang, R. R.; Shi, W.; Zhou, H. C. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem. Rev. 2023, 123 (9), 5347–5420. https://doi.org/10.1021/acs.chemrev.2c00879.Search in Google Scholar PubMed PubMed Central

27. Liu, L.; Corma, A. Identification of the Active Sites in Supported Subnanometric Metal Catalysts. Nat. Catal. 2021, 4 (6), 453–456. https://doi.org/10.1038/s41929-021-00632-y.Search in Google Scholar

28. Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Antonietti, M.; García, H. Active Sites on Graphene-Based Materials as Metal-Free Catalysts. Chem. Soc. Rev. 2017, 46 (15), 4501–4529. https://doi.org/10.1039/c7cs00156h.Search in Google Scholar PubMed

29. Ye, T.-N.; Park, S. W.; Lu, Y.; Li, J.; Wu, J.; Sasase, M.; Kitano, M.; Hosono, H. Dissociative and Associative Concerted Mechanism for Ammonia Synthesis Over Co-Based Catalyst. J. Am. Chem. Soc. 2021, 143 (32), 12857–12866. https://doi.org/10.1021/jacs.1c06657.Search in Google Scholar PubMed

30. Wulff, G. n.; Liu, J. Design of Biomimetic Catalysts by Molecular Imprinting in Synthetic Polymers: The Role of Transition State Stabilization. Acc. Chem. Res. 2012, 45 (2), 239–247. https://doi.org/10.1021/ar200146m.Search in Google Scholar PubMed

31. Liu, Q.-Y.; Shang, C.; Liu, Z.-P. In Situ Active Site for Fe-Catalyzed Fischer–Tropsch Synthesis: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2022, 13 (15), 3342–3352. https://doi.org/10.1021/acs.jpclett.2c00549.Search in Google Scholar PubMed

32. Ertl, G. Elementary Steps in Ammonia Synthesis: The Surface Science Approach. In Catalytic Ammonia Synthesis: Fundamentals and Practice; Springer US: Boston, MA, 1991; pp 109–132.10.1007/978-1-4757-9592-9_3Search in Google Scholar

33. Dry, M. E. The Fischer–Tropsch Process: 1950–2000. Catalysis Today 2002, 71 (3–4), 227–241.10.1016/S0920-5861(01)00453-9Search in Google Scholar

34. Somorjai, G. A.; Li, Y. Introduction to Surface Chemistry and Catalysis. 3rd ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2010.Search in Google Scholar

35. Corma, A. State of the Art and Future Challenges of Zeolites as Catalysts. J. Catal. 2003, 216 (1–2), 298–312.10.1016/S0021-9517(02)00132-XSearch in Google Scholar

36. Liu, J.; Xue, Y.; Zhang, M.; Dai, L. Graphene-based Materials for Energy Applications. MRS Bulletin 2012, 37 (12), 1265–1272.10.1557/mrs.2012.179Search in Google Scholar

37. Berg, A. H.; Powe, C. E.; Evans, M. K.; Wenger, J.; Ortiz, G.; Zonderman, A. B.; Thadhani, R. I. 24, 25-Dihydroxyvitamin d3 and Vitamin D Status of Community-Dwelling Black and White Americans. Clin. Chem. 2015, 61 (6), 877–884.10.1373/clinchem.2015.240051Search in Google Scholar PubMed PubMed Central

38. Mars, P.; Maessen, J. G. H. The Mechanism and the Kinetics of Sulfur Dioxide Oxidation on Catalysts Containing Vanadium and Alkali Oxides. J. Catal. 1968, 10 (1), 1–12.10.1016/0021-9517(68)90216-9Search in Google Scholar

39. Adzahar, N. A.; AbdulKareem-Alsultan, G. G; Lee, H. V.; Taufiq-Yap, Y. H. Advances of Supported-Monometallic and Bimetallic Catalysts Towards Green Aviation Fuels. Energy Adv. 2025, 4 (8), 966–1005.10.1039/D5YA00078ESearch in Google Scholar

40. Borthakur, P. P.; Borthakur, B. The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition. Chem. Proc. 2025, 17 (1), 6. https://doi.org/10.3390/chemproc2025017006.Search in Google Scholar

41. Fan, Z.; Gao, F.; Yi, L.; Tang, X.; Zhang, J.; Luo, N.; Yi, H. Advances in CO Catalytic Oxidation on Typical Metal Oxide Catalysts: Performance, Mechanism, and Optimization. J. Mater. Chem. A 2025, 13, 26129–26165; https://doi.org/10.1039/d5ta03067f.Search in Google Scholar

42. Fierro, J. L. G. Metal Oxides: Chemistry and Applications; CRC Press: Boca Raton, Florida, USA, 2005.Search in Google Scholar

43. Védrine, J. C. Importance, Features and Uses of Metal Oxide Catalysts in Heterogeneous Catalysis. Chin. J. Catal. 2019, 40 (11), 1627–1636. https://doi.org/10.1016/s1872-2067(18)63162-6.Search in Google Scholar

44. Védrine, J. C. Metal Oxides in Heterogeneous Catalysis; Elsevier: Amsterdam, Netherlands, 2018.10.1016/B978-0-12-811631-9.00001-6Search in Google Scholar

45. Alghamdi, K.; Hargreaves, J. S.; Jackson, S. D. Base Catalysis with Metal Oxides. Metal Oxid. Catal. 2008, 819–843. https://doi.org/10.1002/9783527626113.ch21.Search in Google Scholar

46. Nolan, N. T.; Seery, M. K.; Pillai, S. C. Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol−Gel-Synthesized TiO2 Photocatalysts. J. Phys. Chem. C 2009, 113 (36), 16151–16157. https://doi.org/10.1021/jp904358g.Search in Google Scholar

47. Carrier, X.; Royer, S.; Marceau, E. Metal Oxides in Heterogeneous Catalysis, Védrine, J. C., Ed., Elsevier: Amsterdam, Netherlands, 2018, p. 43.10.1016/B978-0-12-811631-9.00002-8Search in Google Scholar

48. Hutchings, G. J.; Védrine, J. C. Heterogeneous Catalyst Preparation. In Basic Principles in Applied Catalysis; Springer: Berlin, Heidelberg, 2004; pp 215–258.10.1007/978-3-662-05981-4_6Search in Google Scholar

49. Hattori, H. Heterogeneous Basic Catalysis. Chem. Rev. 1995, 95 (3), 537–558. https://doi.org/10.1021/cr00035a005.Search in Google Scholar

50. Dossin, T. F.; Reyniers, M.-F.; Marin, G. B. Kinetics of Heterogeneously MgO-Catalyzed Transesterification. Appl. Catal. B Environ. 2006, 62 (1–2), 35–45. https://doi.org/10.1016/j.apcatb.2005.04.005.Search in Google Scholar

51. Di Serio, M.; Tesser, R.; Dimiccoli, M.; Cammarota, F.; Nastasi, M.; Santacesaria, E. Synthesis of Biodiesel via Homogeneous Lewis Acid Catalyst. J. Mol. Catal. A: Chem. 2005, 239 (1–2), 111–115. https://doi.org/10.1016/j.molcata.2005.05.041.Search in Google Scholar

52. Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous Catalysis for Sustainable Biodiesel Production via Esterification and Transesterification. Chem. Soc. Rev. 2014, 43 (22), 7887–7916. https://doi.org/10.1039/c4cs00189c.Search in Google Scholar PubMed

53. Wilson, K.; Renson, A.; Clark, J. Novel Heterogeneous Zinc Triflate Catalysts for the Rearrangement of α-Pinene Oxide. Catal. Lett. 1999, 61, 51–55. https://doi.org/10.1023/a:1019000317198.10.1023/A:1019000317198Search in Google Scholar

54. Bouzayani, B.; Sanromán, M. Á. Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules 2024, 29 (10), 2188. https://doi.org/10.3390/molecules29102188.Search in Google Scholar PubMed PubMed Central

55. Hammouda, S. B.; Adhoum, N.; Monser, L. Synthesis of Magnetic Alginate Beads Based on Fe3O4 Nanoparticles for the Removal of 3-Methylindole from Aqueous Solution Using Fenton Process. J. Hazard. Mater. 2015, 294, 128–136. https://doi.org/10.1016/j.jhazmat.2015.03.068.Search in Google Scholar PubMed

56. Mills, A.; Le Hunte, S. An Overview of Semiconductor Photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108 (1), 1–35. https://doi.org/10.1016/s1010-6030(97)00118-4.Search in Google Scholar

57. Piera, E.; Ayllón, J. A.; Doménech, X.; Peral, J. TiO2 Deactivation During Gas-Phase Photocatalytic Oxidation of Ethanol. Catal. Today 2002, 76 (2–4), 259–270. https://doi.org/10.1016/s0920-5861(02)00224-9.Search in Google Scholar

58. Ye, R.; Xiao, S.; Lai, Q.; Wang, D.; Huang, Y.; Feng, G.; Zhang, R.; Wang, T. Advances in Enhancing the Stability of Cu-Based Catalysts for Methanol Reforming. Catalysts 2022, 12 (7), 747. https://doi.org/10.3390/catal12070747.Search in Google Scholar

59. Kang, M. The Superhydrophilicity of Al–TiO2 Nanometer Sized Material Synthesized Using a Solvothermal Method. Mater. Lett. 2005, 59 (24–25), 3122–3127. https://doi.org/10.1016/j.matlet.2005.05.032.Search in Google Scholar

60. Gombotz, K.; Parette, R.; Austic, G.; Kannan, D.; Matson, J. V. MnO and TiO Solid Catalysts with Low-Grade Feedstocks for Biodiesel Production. Fuel 2012, 92 (1), 9–15. https://doi.org/10.1016/j.fuel.2011.08.031.Search in Google Scholar

61. Guo, H.; Barnard, A. S. Naturally Occurring Iron Oxide Nanoparticles: Morphology, Surface Chemistry and Environmental Stability. J. Mater. Chem. A 2013, 1 (1), 27–42. https://doi.org/10.1039/c2ta00523a.Search in Google Scholar

62. Rubina, S.; Vineetha, P. K.; Anas, S. An Efficient Polymer Supported Fenton Type Catalyst for Photodegradation of Organic Dyes. J. Photochem. Photobiol. A Chem. 2024, 449, 115410. https://doi.org/10.1016/j.jphotochem.2023.115410.Search in Google Scholar

63. Kohns, R.; Meyer, R.; Wenzel, M.; Matysik, J.; Enke, D.; Tallarek, U. In Situ Synthesis and Characterization of Sulfonic Acid Functionalized Hierarchical Silica Monoliths. J. Sol-Gel Sci. Technol. 2020, 96, 67–82. https://doi.org/10.1007/s10971-020-05383-z.Search in Google Scholar

64. Fatimah, I.; Fadillah, G.; Sagadevan, S.; Oh, W. C.; Ameta, K. L. Mesoporous Silica-Based Catalysts for Biodiesel Production: A Review. ChemEngineering 2023, 7 (3), 56. https://doi.org/10.3390/chemengineering7030056.Search in Google Scholar

65. Erigoni, A.; Diaz, U. Porous Silica-Based Organic-Inorganic Hybrid Catalysts: A Review. Catalysts 2021, 11 (1), 79. https://doi.org/10.3390/catal11010079.Search in Google Scholar

66. Albuquerque, M. C.; Jiménez-Urbistondo, I.; Santamaría-González, J.; Mérida-Robles, J. M.; Moreno-Tost, R.; Rodríguez-Castellón, E.; Jiménez-López, A.; Azevedo, D. C.; Cavalcante, C. L.Jr.; Maireles-Torres, P. CaO Supported on Mesoporous Silicas as Basic Catalysts for Transesterification Reactions. Appl. Catal. A Gen. 2008, 334 (1–2), 35–43. https://doi.org/10.1016/j.apcata.2007.09.028.Search in Google Scholar

67. Praharaj, S.; Nath, S.; Ghosh, S. K.; Kundu, S.; Pal, T. Immobilization and Recovery of Au Nanoparticles from Anion Exchange Resin: Resin-Bound Nanoparticle Matrix as a Catalyst for the Reduction of 4-Nitrophenol. Langmuir 2004, 20 (23), 9889–9892. https://doi.org/10.1021/la0486281.Search in Google Scholar PubMed

68. Vinu, A.; Gokulakrishnan, N.; Balasubramanian, V.; Alam, S.; Kapoor, M.; Ariga, K.; Mori, T. Three-Dimensional Ultralarge-Pore Ia3d Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chem. Eur J. 2008, 14 (36), 11529–11538. https://doi.org/10.1002/chem.200801304.Search in Google Scholar PubMed

69. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114 (27), 10834–10843. https://doi.org/10.1021/ja00053a020.Search in Google Scholar

70. Cabrera, K. Applications of Silica-Based Monolithic HPLC Columns. J. Separ. Sci. 2004, 27 (10–11), 843–852. https://doi.org/10.1002/jssc.200401827.Search in Google Scholar PubMed

71. Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Ecol. 2013, 6, 185–205. https://doi.org/10.1007/s12154-013-0102-9.Search in Google Scholar PubMed PubMed Central

72. David, A. E.; Wang, N. S.; Yang, V. C.; Yang, A. J. Chemically Surface Modified Gel (CSMG): An Excellent Enzyme-Immobilization Matrix for Industrial Processes. J. Biotechnol. 2006, 125 (3), 395–407. https://doi.org/10.1016/j.jbiotec.2006.03.019.Search in Google Scholar PubMed

73. Rác, B.; Hegyes, P.; Forgo, P.; Molnár, Á. Sulfonic Acid-Functionalized Phenylene-Bridged Periodic Mesoporous Organosilicas as Catalyst Materials. Appl. Catal. A Gen. 2006, 299, 193–201. https://doi.org/10.1016/j.apcata.2005.10.026.Search in Google Scholar

74. Fernandes, A. E.; Jonas, A. M. Design and Engineering of Multifunctional Silica-Supported Cooperative Catalysts. Catal. Today 2019, 334, 173–186. https://doi.org/10.1016/j.cattod.2018.11.040.Search in Google Scholar

75. Fu, X.; Li, D.; Chen, J.; Zhang, Y.; Huang, W.; Zhu, Y.; Yang, J.; Zhang, C. A Microalgae Residue Based Carbon Solid Acid Catalyst for Biodiesel Production. Bioresour. Technol. 2013, 146, 767–770. https://doi.org/10.1016/j.biortech.2013.07.117.Search in Google Scholar PubMed

76. Hudson, S.; Cooney, J.; Magner, E. Proteins in Mesoporous Silicates. Angew. Chem., Int. Ed. 2008, 47 (45), 8582–8594. https://doi.org/10.1002/anie.200705238.Search in Google Scholar PubMed

77. Blanco, R. M.; Terreros, P.; Fernández-Pérez, M.; Otero, C.; Dı́az-González, G. Functionalization of Mesoporous Silica for Lipase Immobilization: Characterization of the Support and the Catalysts. J. Mol. Catal. B: Enzym. 2004, 30 (2), 83–93. https://doi.org/10.1016/j.molcatb.2004.03.012.Search in Google Scholar

78. Patil, R. V.; Chavan, J. U.; Dalal, D. S.; Shinde, V. S.; Beldar, A. G. Biginelli Reaction: Polymer Supported Catalytic Approaches. ACS Comb. Sci. 2019, 21 (3), 105–148. https://doi.org/10.1021/acscombsci.8b00120.Search in Google Scholar PubMed

79. Schiaroli, N.; Allegri, A.; Eberle, M.; Billi, S.; Guerrini, A.; Albonetti, S.; Vaccari, A.; Tabanelli, T.; Lucarelli, C. Superacid Resin-Based Heterogeneous Catalysts for the Selective Acylation of 1, 2-Methylenedioxybenzene. ChemSusChem 2023, 16 (21), e202300903. https://doi.org/10.1002/cssc.202300903.Search in Google Scholar PubMed

80. Simons, C.; Hanefeld, U.; Arends, I.; Maschmeyer, T.; Sheldon, R. Comparison of Supports for the Electrostatic Immobilisation of Asymmetric Homogeneous Catalysts. J. Catal. 2006, 239 (1), 212–219. https://doi.org/10.1016/j.jcat.2006.01.027.Search in Google Scholar

81. Swallow, K. C.; Hume, D. N.; Morel, F. M. Sorption of Copper and Lead by Hydrous Ferric Oxide. Environ. Sci. Technol. 1980, 14 (11), 1326–1331. https://doi.org/10.1021/es60171a003.Search in Google Scholar

82. Guo, X.; Chen, F. Removal of Arsenic by Bead Cellulose Loaded with Iron Oxyhydroxide from Groundwater. Environ. Sci. Technol. 2005, 39 (17), 6808–6818. https://doi.org/10.1021/es048080k.Search in Google Scholar PubMed

83. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic Nanoparticle Design for Medical Diagnosis and Therapy. J. Mater. Chem. 2004, 14 (14), 2161–2175. https://doi.org/10.1039/b402025a.Search in Google Scholar

84. Wunderbaldinger, P.; Josephson, L.; Weissleder, R. Crosslinked Iron Oxides (CLIO): A New Platform for the Development of Targeted MR Contrast Agents. Acad. Radiol. 2002, 9 (2), S304–S306. https://doi.org/10.1016/s1076-6332(03)80210-6.Search in Google Scholar PubMed

85. Cai, X.; Liu, Y.; Li, G.; Hu, W.; Liu, X.; Chen, M.; Ding, W.; Zhu, Y. A Functionalized Heterogeneous Catalyst from Atomically Precise Pd1Au8 Clusters Facilitates Carbon–Carbon Bond Construction. Adv. Mater. 2023, 35 (29), 2301466. https://doi.org/10.1002/adma.202301466.Search in Google Scholar PubMed

86. Alexandratos, S. D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48 (1), 388–398. https://doi.org/10.1021/ie801242v.Search in Google Scholar

87. Gu, Y.; Son, S. U.; Li, T.; Tan, B. Low-Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Adv. Funct. Mater. 2021, 31 (12), 2008265. https://doi.org/10.1002/adfm.202008265.Search in Google Scholar

88. Harmer, M. A.; Sun, Q. Solid Acid Catalysis Using Ion-Exchange Resins. Appl. Catal. A Gen. 2001, 221 (1–2), 45–62. https://doi.org/10.1016/s0926-860x(01)00794-3.Search in Google Scholar

89. Sherrington, D. C. Preparation, Structure and Morphology of Polymer Supports. Chem. Commun. 1998 (21), 2275–2286. https://doi.org/10.1039/a803757d.Search in Google Scholar

90. Pérez-Maciá, M. A.; Curcó, D.; Bringué, R.; Iborra, M.; Rodríguez-Ropero, F.; van der Vegt, N. F. A.; Aleman, C. 1-Butanol Absorption in Poly (Styrene-Divinylbenzene) Ion Exchange Resins for Catalysis. Soft Matter 2015, 11 (47), 9144–9149. https://doi.org/10.1039/c5sm02168e.Search in Google Scholar PubMed

91. Satoh, K.; Kamigaito, M.; Sawamoto, M. Transition Metal Complexes for Metal-Catalyzed Atom Transfer Controlled/Living Radical Polymerization. Polym. Sci. Compr. Ref. 2012, 429–461. https://doi.org/10.1016/b978-0-444-53349-4.00072-8.Search in Google Scholar

92. Bailey, D. C.; Langer, S. H. Immobilized Transition-Metal Carbonyls and Related Catalysts. Chem. Rev. 1981, 81 (2), 109–148. https://doi.org/10.1021/cr00042a001.Search in Google Scholar

93. Partridge, S. Ion-Exchange Resins as Molecular Sieves. Nature 1952, 169 (4299), 496–497. https://doi.org/10.1038/169496a0.Search in Google Scholar PubMed

94. Wachinski, A. M. Environmental Ion Exchange: Principles and Design; CRC Press: Boca Raton, Florida, USA, 2016.10.1201/9781315368542Search in Google Scholar

95. Zhang, S.; Ning, S.; Liu, H.; Wang, X.; Wei, Y.; Yin, X. Preparation of Ion-Exchange Resin via In-Situ Polymerization for Highly Selective Separation and Continuous Removal of Palladium from Electroplating Wastewater. Sep. Purif. Technol. 2021, 258, 117670. https://doi.org/10.1016/j.seppur.2020.117670.Search in Google Scholar

96. Nachod, F. C.; Schubert, J. Ion Exchange Technology; Academic Press: New York, NY, USA, 2013.Search in Google Scholar

97. Barbaro, P.; Liguori, F. Ion Exchange Resins: Catalyst Recovery and Recycle. Chem. Rev. 2009, 109 (2), 515–529. https://doi.org/10.1021/cr800404j.Search in Google Scholar PubMed

98. Pothanagandhi, N.; Vijayakrishna, K. RAFT Derived Chiral and Achiral Poly (Ionic Liquids) Resins: Synthesis and Application in Organocatalysis. Eur. Polym. J. 2017, 95, 785–794. https://doi.org/10.1016/j.eurpolymj.2017.08.002.Search in Google Scholar

99. Chimal-Valencia, O.; Robau-Sánchez, A.; Collins-Martı́nez, V.; Aguilar-Elguézabal, A. Ion Exchange Resins as Catalyst for the Isomerization of α-Pinene to Camphene. Bioresour. Technol. 2004, 93 (2), 119–123. https://doi.org/10.1016/j.biortech.2003.10.016.Search in Google Scholar PubMed

100. Kann, N. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis. Molecules 2010, 15 (9), 6306–6331. https://doi.org/10.3390/molecules15096306.Search in Google Scholar PubMed PubMed Central

101. Kobayashi, S.; Akiyama, R. Renaissance of Immobilized Catalysts. New Types of Polymer-Supported Catalysts, ‘Microencapsulated Catalysts’, Which Enable Environmentally Benign and Powerful High-Throughput Organic Synthesis. Chem. Commun. 2003 (4), 449–460. https://doi.org/10.1039/b207445a.Search in Google Scholar PubMed

102. Diwakar, M.; Deshpande, R.; Chaudhari, R. Hydroformylation of 1-Hexene Using Rh/TPPTS Complex Exchanged on Anion Exchange Resin: Kinetic Studies. J. Mol. Catal. A: Chem. 2005, 232 (1–2), 179–186. https://doi.org/10.1016/j.molcata.2005.01.033.Search in Google Scholar

103. Westerterp, K. R.; Molga, E.; Van Gelder, K. Catalytic Hydrogenation Reactors for the Fine Chemicals Industries. Their Design and Operation. Chem. Eng. Process. Process Intensif. 1997, 36 (1), 17–27. https://doi.org/10.1016/s0255-2701(96)04168-2.Search in Google Scholar

104. Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Developments in Asymmetric Hydrogenation from an Industrial Perspective. Acc. Chem. Res. 2007, 40 (12), 1385–1393. https://doi.org/10.1021/ar700101x.Search in Google Scholar PubMed

105. Pérez, M.; Caputo, C. B.; Dobrovetsky, R.; Stephan, D. W. Metal-Free Transfer Hydrogenation of Olefins via Dehydrocoupling Catalysis. Proc. Natl. Acad. Sci. 2014, 111 (30), 10917–10921. https://doi.org/10.1073/pnas.1407484111.Search in Google Scholar PubMed PubMed Central

106. Elamin, B.; Anantharamaiah, G. M.; Royer, G. P.; Means, G. E. Removal of Benzyl-Type Protecting Groups from Peptides by Catalytic Transfer Hydrogenation with Formic Acid. J. Org. Chem. 1979, 44 (19), 3442–3444. https://doi.org/10.1021/jo01333a048.Search in Google Scholar

107. Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115 (13), 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203.Search in Google Scholar PubMed

108. Long, J.; Zhou, Y.; Li, Y. Transfer Hydrogenation of Unsaturated Bonds in the Absence of Base Additives Catalyzed by a Cobalt-Based Heterogeneous Catalyst. Chem. Commun. 2015, 51 (12), 2331–2334. https://doi.org/10.1039/c4cc08946d.Search in Google Scholar PubMed

109. Zhou, Y.; Zhou, W.; Hou, D.; Li, G.; Wan, J.; Feng, C.; Tang, Z.; Chen, S. Metal–Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. Small 2016, 12 (20), 2768–2774. https://doi.org/10.1002/smll.201503100.Search in Google Scholar PubMed

110. Tamura, M.; Kishi, R.; Nakagawa, Y.; Tomishige, K. Self-Assembled Hybrid Metal Oxide Base Catalysts Prepared by Simply Mixing with Organic Modifiers. Nat. Commun. 2015, 6 (1), 8580. https://doi.org/10.1038/ncomms9580.Search in Google Scholar PubMed PubMed Central

111. Song, Z.; Zhou, J.; Jin, L.; Guan, Y.; Wang, W.; Guo, W. Influence of a Novel Biobased Coating Decorated with UiO-66/BN in Persistent Flame-Retardant Hybrids on the Fire Safety and Thermal Degradation of Epoxy Resin. Front. Chem. Sci. Eng. 2025, 19 (5), 43. https://doi.org/10.1007/s11705-025-2545-2.Search in Google Scholar

112. Goodman, E. D.; Zhou, C.; Cargnello, M. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Cent. Sci. 2020, 6 (11), 1916–1937. https://doi.org/10.1021/acscentsci.0c01046.Search in Google Scholar PubMed PubMed Central

113. Shi, F.; Zhang, Q.; Li, D.; Deng, Y. Silica-Gel-Confined Ionic Liquids: A New Attempt for the Development of Supported Nanoliquid Catalysis. Chem. Eur J. 2005, 11 (18), 5279–5288. https://doi.org/10.1002/chem.200500107.Search in Google Scholar PubMed

114. Mehnert, C. P.; Cook, R. A.; Dispenziere, N. C.; Afeworki, M. Supported Ionic Liquid Catalysis − A New Concept for Homogeneous Hydroformylation Catalysis. J. Am. Chem. Soc. 2002, 124 (44), 12932–12933. https://doi.org/10.1021/ja0279242.Search in Google Scholar PubMed

115. Motokura, K.; Tada, M.; Iwasawa, Y. Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot C−C Bond Forming Reactions. Angew. Chem. 2008, 120, 9370–9375. https://doi.org/10.1002/ange.200802515.Search in Google Scholar

116. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. J. Am. Chem. Soc. 1999, 121 (41), 9611–9614. https://doi.org/10.1021/ja9916658.Search in Google Scholar

117. Mizoshita, N.; Tani, T.; Inagaki, S. Syntheses, Properties and Applications of Periodic Mesoporous Organosilicas Prepared from Bridged Organosilane Precursors. Chem. Soc. Rev. 2011, 40 (2), 789–800. https://doi.org/10.1039/c0cs00010h.Search in Google Scholar PubMed

118. Huang, M.-Y.; Wu, J. C.; Shieu, F. S.; Lin, J. J. Isomerization of Endo-Tetrahydrodicyclopentadiene Over Clay-Supported Chloroaluminate Ionic Liquid Catalysts. J. Mol. Catal. A: Chem. 2010, 315 (1), 69–75. https://doi.org/10.1016/j.molcata.2009.09.002.Search in Google Scholar

119. Wang, Z. T.; Wang, S. C.; Xu, L. W. Polymer-Supported Ionic-Liquid-Catalyzed Synthesis of 1, 2, 3, 4-Tetrahydro-2-Oxopyrimidine-5-Carboxylates via Biginelli Reaction. Helv. Chim. Acta 2005, 88 (5), 986–989. https://doi.org/10.1002/hlca.200590093.Search in Google Scholar

120. Dondoni, A.; Massi, A. Parallel Synthesis of Dihydropyrimidinones Using Yb (III)-Resin and Polymer-Supported Scavengers Under Solvent-Free Conditions. A Green Chemistry Approach to the Biginelli Reaction. Tetrahedron Lett. 2001, 42 (45), 7975–7978. https://doi.org/10.1016/s0040-4039(01)01728-2.Search in Google Scholar

121. Singh, K.; Arora, D.; Singh, S. Dowex-Promoted General Synthesis of N, N′-Disubstituted-4-Aryl-3, 4-Dihydropyrimidinones Using a Solvent-Free Biginelli Condensation Protocol. Tetrahedron Lett. 2006, 47 (25), 4205–4207. https://doi.org/10.1016/j.tetlet.2006.04.061.Search in Google Scholar

122. Pansuriya, A. M.; Savant, M.; Bhuva, C.; Kapuriya, N.; Singh, J.; Naliapara, Y. Cation Exchange Resin (Indion 130): An Efficient, Environment Friendly and Recyclable Heterogeneous Catalyst for the Biginelli Condensation. Lett. Org. Chem. 2009, 6 (8), 619–623. https://doi.org/10.2174/157017809790442925.Search in Google Scholar

123. Murata, H.; Ishitani, H.; Iwamoto, M. Synthesis of Biginelli Dihydropyrimidinone Derivatives with Various Substituents on Aluminium-Planted Mesoporous Silica Catalyst. Org. Biomol. Chem. 2010, 8 (5), 1202–1211. https://doi.org/10.1039/b920821f.Search in Google Scholar PubMed

124. Uddin, M. N.; Le, L.; Nair, R.; Asmatulu, R. Effects of Graphene Oxide Thin Films and Nanocomposite Coatings on Flame Retardancy and Thermal Stability of Aircraft Composites: A Comparative Study. J. Eng. Mater. Technol. 2019, 141 (3), 031004. https://doi.org/10.1115/1.4042663.Search in Google Scholar

125. Sheldon, R. A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349 (8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082.Search in Google Scholar

126. Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. Polymer-Protected Ni/Pd Bimetallic Nano-Clusters: Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. J. Phys. Chem. B 1999, 103 (44), 9673–9682. https://doi.org/10.1021/jp992177p.Search in Google Scholar

127. Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic–Inorganic Nanocomposites. J. Mater. Chem. 2005, 15 (35–36), 3559–3592. https://doi.org/10.1039/b509097k.Search in Google Scholar

128. Thomas, J. M.; Raja, R.; Lewis, D. W. Single-Site Heterogeneous Catalysts. Angew. Chem., Int. Ed. 2005, 44 (40), 6456–6482. https://doi.org/10.1002/anie.200462473.Search in Google Scholar PubMed

129. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Cover Picture: Silica-Based Mesoporous Organic–Inorganic Hybrid Materials (Angew. Chem. Int. Ed. 20/2006). Angew. Chem., Int. Ed. 2006, 45 (20), 3187. https://doi.org/10.1002/anie.200690070.Search in Google Scholar

130. Pirez, C.; Wilson, K.; Lee, A. F. An Energy-Efficient Route to the Rapid Synthesis of Organically-Modified SBA-15 via Ultrasonic Template Removal. Green Chem. 2014, 16 (1), 197–202. https://doi.org/10.1039/c3gc40474a.Search in Google Scholar

131. Srinivasan, P.; Rao, V. J.; Banda, G. Substituted Dihydropyrimidinone Preparation Using Polyaniline Salt Catalyst. Google Patents, 2007.Search in Google Scholar

132. Gangadasu, B.; Palaniappan, S.; Amarnath, C. A.; Rao, V. J. Polyaniline Salts and Complexes: Efficient and Reusable Catalyst for the One-Pot Synthesis of 5-(Methoxycarbonyl)-6-Methyl-4-Phenyl-3, 4-Dihydropyrimidin-2 (1h)-One. J. Appl. Polym. Sci. 2006, 102 (2), 1741–1745. https://doi.org/10.1002/app.24374.Search in Google Scholar

133. Gupta, A.; Khare, S. Enzymes from Solvent-Tolerant Microbes: Useful Biocatalysts for Non-Aqueous Enzymology. Crit. Rev. Biotechnol. 2009, 29 (1), 44–54. https://doi.org/10.1080/07388550802688797.Search in Google Scholar PubMed

134. Chorkendorff, I.; Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics; John Wiley & Sons: Hoboken, New Jersey, USA, 2017.Search in Google Scholar

135. Howard, M.; Jones, M.; Roberts, M.; Taylor, S. C1 to Acetyls: Catalysis and Process. Catal. Today 1993, 18 (4), 325–354. https://doi.org/10.1016/0920-5861(93)80060-e.Search in Google Scholar

136. Pavithran, P.; John, R. M.; George, S. C.; Raju, N. M. Highly Efficient Removal of Chromium, Methylene Blue and Methyl Orange Using Electrospun Polyurethane as a Support in Heterogeneous Fenton Reaction. Environ. Process. 2024, 11 (1), 17. https://doi.org/10.1007/s40710-024-00697-4.Search in Google Scholar

137. Ghiaci, M.; Abbaspur, A.; Kia, R.; Seyedeyn-Azad, F. Equilibrium Isotherm Studies for the Sorption of Benzene, Toluene, and Phenol onto Organo-Zeolites and As-Synthesized MCM-41. Separ. Purif. Technol. 2004, 40 (3), 217–229. https://doi.org/10.1016/j.seppur.2004.03.001.Search in Google Scholar

138. Ma, Y.; Chen, H.; Shi, Y.; Yuan, S. Low Cost Synthesis of Mesoporous Molecular Sieve MCM-41 from Wheat Straw Ash Using CTAB as Surfactant. Mater. Res. Bull. 2016, 77, 258–264. https://doi.org/10.1016/j.materresbull.2016.01.052.Search in Google Scholar

139. Fatimah, I.; Taushiyah, A.; Najah, F. B.; Azmi, U. ZrO2/Bamboo Leaves Ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil. In IOP Conference Series: Materials Science and Engineering; IOP Publishing, Vol. 349, 2018; p 012027.10.1088/1757-899X/349/1/012027Search in Google Scholar

140. Shimizu, K.-I.; Suzuki, H.; Hayashi, E.; Kodama, T.; Tsuchiya, Y.; Hagiwara, H.; Kitayama, Y. Catalytic Direct 1, 4-Conjugate Addition of Aldehydes to Vinylketones on Secondary-Amines Immobilised in FSM-16 Silica. Chem. Commun. 2002 (10), 1068–1069. https://doi.org/10.1039/b202488h.Search in Google Scholar PubMed

141. Bass, J. D.; Solovyov, A.; Pascall, A. J.; Katz, A. Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis: A Comparative Investigation of Model Primary Amine Catalysts. J. Am. Chem. Soc. 2006, 128 (11), 3737–3747. https://doi.org/10.1021/ja057395c.Search in Google Scholar PubMed

142. Corma, A. Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catal. Rev. 2004, 46 (3–4), 369–417. https://doi.org/10.1081/cr-200036732.Search in Google Scholar

143. Schweizer, S.; Becht, J. M.; Le Drian, C. Development of Efficient and Reusable Diarylphosphinopolystyrene-Supported Palladium Catalysts for C–C Bond Forming Cross-Coupling Reactions. Adv. Synth. Catal. 2007, 349 (7), 1150–1158. https://doi.org/10.1002/adsc.200600503.Search in Google Scholar

144. Wen, H.; Yao, K.; Zhang, Y.; Zhou, Z.; Kirschning, A. Catalytic Transfer Hydrogenation of Aromatic Nitro Compounds in Presence of Polymer-Supported Nano-Amorphous Ni–B Catalyst. Catal. Commun. 2009, 10 (8), 1207–1211. https://doi.org/10.1016/j.catcom.2009.01.030.Search in Google Scholar

145. Basu, B.; Das, P.; Das, S. Transfer Hydrogenation Using Recyclable Polymer-Supported Formate (PSF): Efficient and Chemoselective Reduction of Nitroarenes. Mol. Divers. 2005, 9, 259–262. https://doi.org/10.1007/s11030-005-8106-1.Search in Google Scholar PubMed

146. Osta, O.; Bombled, M.; Partouche, D.; Gallier, F.; Lubin-Germain, N.; Brodie-Linder, N.; Alba-Simionesco, C. Tailoring the Hydrophobicity of Mesoporous Organosilica for Protein Trapping and Supported Catalysis. arXiv preprint arXiv:1904.05666, 2019.Search in Google Scholar

147. Chen, X.-R.; Ju, Y.-H.; Mou, C.-Y. Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification. J. Phys. Chem. C 2007, 111 (50), 18731–18737. https://doi.org/10.1021/jp0749221.Search in Google Scholar

148. Chen, D.; Li, Z.; Wan, Y.; Tu, X.; Shi, Y.; Chen, Z.; Shen, W.; Yu, C.; Tu, B.; Zhao, D. Anionic Surfactant Induced Mesophase Transformation to Synthesize Highly Ordered Large-Pore Mesoporous Silica Structures. J. Mater. Chem. 2006, 16 (16), 1511–1519. https://doi.org/10.1039/b517975k.Search in Google Scholar

149. Chen, S.-Y.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y. Ti-Incorporated SBA-15 Mesoporous Silica as an Efficient and Robust Lewis Solid Acid Catalyst for the Production of High-Quality Biodiesel Fuels. Appl. Catal. B Environ. 2014, 148, 344–356. https://doi.org/10.1016/j.apcatb.2013.11.009.Search in Google Scholar

150. Li, D.; Xu, F.; Tang, X.; Dai, S.; Pu, T.; Liu, X.; Tian, P.; Xuan, F.; Xu, Z.; Wachs, I. E.; Zhu, M. Induced Activation of the Commercial Cu/ZnO/Al2O3 Catalyst for the Steam Reforming of Methanol. Nat. Catal. 2022, 5 (2), 99–108. https://doi.org/10.1038/s41929-021-00729-4.Search in Google Scholar

151. Bagherzadeh, S. B.; Haghighi, M.; Rahemi, N. Novel Oxalate Gel Coprecipitation Synthesis of ZrO2-CeO2-Promoted CuO-ZnO-Al2O3 Nanocatalyst for Fuel Cell-Grade Hydrogen Production from Methanol: Influence of Ceria-Zirconia Loading. Energy Convers. Manage. 2017, 134, 88–102. https://doi.org/10.1016/j.enconman.2016.12.005.Search in Google Scholar

152. Mateos-Pedrero, C.; Azenha, C.; Pacheco Tanaka, D. A.; Sousa, J.; Mendes, A. The Influence of the Support Composition on the Physicochemical and Catalytic Properties of Cu Catalysts Supported on Zirconia-Alumina for Methanol Steam Reforming. Appl. Catal. B Environ. 2020, 277, 119243. https://doi.org/10.1016/j.apcatb.2020.119243.Search in Google Scholar

153. Guilera, J.; Ramírez, E.; Fité, C.; Iborra, M.; Tejero, J. Thermal Stability and Water Effect on Ion-Exchange Resins in Ethyl Octyl Ether Production at High Temperature. Appl. Catal. A Gen. 2013, 467, 301–309. https://doi.org/10.1016/j.apcata.2013.07.024.Search in Google Scholar

154. Olah, G. A.; Prakash, G. S.; Sommer, J.; Molnar, A. Superacid Chemistry, 2nd ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2009.10.1002/9780470421604Search in Google Scholar

155. Basu, B.; Almqvist, F.; Das, S.; Das, P.; Mandal, B.; Banerjee, D. Palladium Supported on a Polyionic Resin as an Efficient, Ligand-Free, and Recyclable Catalyst for Heck, Suzuki-Miyaura, and Sonogashira Reactions. Synthesis 2009, 2009 (7), 1137–1146. https://doi.org/10.1055/s-0028-1088003.Search in Google Scholar

156. Solodenko, W.; Wen, H.; Leue, S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Jas, G.; Schönfeld, H.; Kunz, U.; Kirschning, A. Development of a Continuous-Flow System for Catalysis with Palladium (0) Particles. Eur. J. Org. Chem. 2004, 2004 (17), 3601–3610. https://doi.org/10.1002/ejoc.200400194.Search in Google Scholar

157. Grosselin, J. M.; Mercier, C.; Allmang, G.; Grass, F. Selective Hydrogenation of Alpha, Beta-Unsaturated Aldehydes in Aqueous Organic Two-Phase Solvent Systems Using Ruthenium or Rhodium Complexes of Sulfonated Phosphines. Organometallics 1991, 10 (7), 2126–2133. https://doi.org/10.1021/om00053a014.Search in Google Scholar

158. Farooq, M.; Ramli, A.; Subbarao, D. Biodiesel Production from Waste Cooking Oil Using Bifunctional Heterogeneous Solid Catalysts. J. Clean. Prod. 2013, 59, 131–140. https://doi.org/10.1016/j.jclepro.2013.06.015.Search in Google Scholar

159. Wang, S.-S.; Su, H. Y.; Gu, X. K.; Li, W. X. Differentiating Intrinsic Reactivity of Copper, Copper–Zinc Alloy, and Copper/Zinc Oxide Interface for Methanol Steam Reforming by First-Principles Theory. J. Phys. Chem. C 2017, 121 (39), 21553–21559. https://doi.org/10.1021/acs.jpcc.7b07703.Search in Google Scholar

160. Yang, S.; Zhou, F.; Liu, Y.; Zhang, L.; Chen, Y.; Wang, H.; Tian, Y.; Zhang, C.; Liu, D. Morphology Effect of Ceria on the Performance of CuO/CeO2 Catalysts for Hydrogen Production by Methanol Steam Reforming. Int. J. Hydrogen Energy 2019, 44 (14), 7252–7261. https://doi.org/10.1016/j.ijhydene.2019.01.254.Search in Google Scholar

161. Sheldon, R. A. Green and Sustainable Chemistry: Challenges and Perspectives. Green Chem. 2008, 10, 359–360.10.1039/b804163fSearch in Google Scholar

162. Mikhaylov, V. N.; Sorokoumov, V. N.; Korvinson, K. A.; Novikov, A. S.; Balova, I. A. Synthesis and Simple Immobilization of Palladium (II) Acyclic Diaminocarbene Complexes on Polystyrene Support as Efficient Catalysts for Sonogashira and Suzuki–Miyaura Cross-Coupling. Organometallics 2016, 35 (11), 1684–1697. https://doi.org/10.1021/acs.organomet.6b00144.Search in Google Scholar

163. Wohlfahrt, G.; Witt, S.; Hendle, J.; Schomburg, D.; Kalisz, H. M.; Hecht, H. J. 1.8 and 1.9 Å Resolution Structures of the Penicillium Amagasakiense and Aspergillus Niger Glucose Oxidases as a Basis for Modelling Substrate Complexes. Biol. Crystallogr. 1999, 55 (5), 969–977. https://doi.org/10.1107/s0907444999003431.Search in Google Scholar PubMed

164. Busca, G. Silica-Alumina Catalytic Materials: A Critical Review. Catal. Today 2020, 357, 621–629. https://doi.org/10.1016/j.cattod.2019.05.011.Search in Google Scholar

165. Dantas Ramos, A. L.; Alves, P. D. S.; Aranda, D. A.; Schmal, M. Characterization of Carbon Supported Palladium Catalysts: Inference of Electronic and Particle Size Effects Using Reaction Probes. Appl. Catal. A Gen. 2004, 277 (1–2), 71–81. https://doi.org/10.1016/j.apcata.2004.08.033.Search in Google Scholar

166. Schmal, M. Heterogeneous Catalysis and its Industrial Applications; Springer: New York, NY, USA, 2016.10.1007/978-3-319-09250-8Search in Google Scholar

167. De Carvalho, M. C.; Morgado, E.; Cerqueira, H. S.; de Resende, N. S.; Schmal, M. Behavior of Fresh and Deactivated Combustion Promoter Additives. Ind. Eng. Chem. Res. 2004, 43 (12), 3133–3136. https://doi.org/10.1021/ie034292z.Search in Google Scholar

168. Sarkany, J.; Gonzalez, R. D. Support and Dispersion Effects on Silica-and Alumina-Supported Platinum Catalysts: II. Effect on the CO-O2 Reaction. Appl. Catal. 1983, 5 (1), 85–97.10.1016/0166-9834(83)80297-8Search in Google Scholar

169. McCarthy, E.; Zahradnik, J.; Kuczynski, G. C.; Carberry, J. J. Some Unique Aspects of CO Oxidation on Supported Pt. J. Catal. 1975, 39 (1), 29–35; https://doi.org/10.1016/0021-9517(75)90278-x.Search in Google Scholar

170. Passos, F. B.; Aranda, D. A.; Schmal, M. Characterization and Catalytic Activity of Bimetallic Pt-In/Al2O3 and Pt-Sn/Al2O3 Catalysts. J. Catal. 1998, 178 (2), 478–488. https://doi.org/10.1006/jcat.1998.2173.Search in Google Scholar

171. Subba Rao, C.; Sathish, T.; Ravichandra, P.; Prakasham, R. Characterization of Thermo-and Detergent Stable Serine Protease from Isolated Bacillus Circulans and Evaluation of Eco-Friendly Applications. Process Biochem. 2009, 44 (3), 262–268. https://doi.org/10.1016/j.procbio.2008.10.022.Search in Google Scholar

172. Lotero, E.; Goodwin, J. G.; Bruce, D. A.; Suwannakarn, K.; Liu, Y.; Lopez, D. E. The Catalysis of Biodiesel Synthesis. Catalysis 2006, 19, 41–83.Search in Google Scholar

173. Fukuda, H.; Kondo, A.; Noda, H. Biodiesel Fuel Production by Transesterification of Oils. J. Biosci. Bioeng. 2001, 92 (5), 405–416. https://doi.org/10.1263/jbb.92.405.Search in Google Scholar PubMed

174. Mbaraka, I. K.; McGuire, K. J.; Shanks, B. H. Acidic Mesoporous Silica for the Catalytic Conversion of Fatty Acids in Beef Tallow. Ind. Eng. Chem. Res. 2006, 45 (9), 3022–3028. https://doi.org/10.1021/ie0601089.Search in Google Scholar

175. Verziu, M.; Cojocaru, B.; Hu, J.; Richards, R.; Ciuculescu, C.; Filip, P.; Parvulescu, V. I. Sunflower and Rapeseed Oil Transesterification to Biodiesel Over Different Nanocrystalline MgO Catalysts. Green Chem. 2008, 10 (4), 373–381. https://doi.org/10.1039/b712102d.Search in Google Scholar

176. Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K. A Carbon Material as a Strong Protonic Acid. Angew. Chem., Int. Ed. 2004, 43 (22), 2955–2958. https://doi.org/10.1002/anie.200453947.Search in Google Scholar PubMed

177. Mohtashami, Y.; Taghizadeh, M. Performance of the ZrO2 Promoted CuZnO Catalyst Supported on Acetic Acid-Treated MCM-41 in Methanol Steam Reforming. Int. J. Hydrogen Energy 2019, 44 (12), 5725–5738. https://doi.org/10.1016/j.ijhydene.2019.01.029.Search in Google Scholar

178. Kaur, M.; Sharma, S.; Bedi, P. M. Silica Supported Brönsted Acids as Catalyst in Organic Transformations: A Comprehensive Review. Chin. J. Catal. 2015, 36 (4), 520–549. https://doi.org/10.1016/s1872-2067(14)60299-0.Search in Google Scholar

179. Kulkarni, M. G.; Dalai, A. K. Waste Cooking Oil an Economical Source for Biodiesel: A Review. Ind. Eng. Chem. Res. 2006, 45 (9), 2901–2913. https://doi.org/10.1021/ie0510526.Search in Google Scholar

180. Jothiramalingam, R.; Wang, M. K. Review of Recent Developments in Solid Acid, Base, and Enzyme Catalysts (Heterogeneous) for Biodiesel Production via Transesterification. Ind. Eng. Chem. Res. 2009, 48 (13), 6162–6172. https://doi.org/10.1021/ie801872t.Search in Google Scholar

181. Zong, M.-H.; Duan, Z. Q.; Lou, W. Y.; Smith, T. J.; Wu, H. Preparation of a Sugar Catalyst and its Use for Highly Efficient Production of Biodiesel. Green Chem. 2007, 9 (5), 434–437. https://doi.org/10.1039/b615447f.Search in Google Scholar

182. Chaowamalee, S.; Yan, N.; Ngamcharussrivichai, C. Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis. Nanomaterials 2022, 12 (4), 604. https://doi.org/10.3390/nano12040604.Search in Google Scholar PubMed PubMed Central

183. Soler, M. A. Layer-by-Layer Assembled Iron Oxide Based Polymeric Nanocomposites. J. Magn. Magn. Mater. 2018, 467, 37–48. https://doi.org/10.1016/j.jmmm.2018.07.035.Search in Google Scholar

184. Bokare, A. D.; Choi, W. Review of Iron-Free Fenton-Like Systems for Activating H2O2 in Advanced Oxidation Processes. J. Hazard Mater. 2014, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054.Search in Google Scholar PubMed

185. Sreeprasanth, P.; Srivastava, R.; Srinivas, D.; Ratnasamy, P. Hydrophobic, Solid Acid Catalysts for Production of Biofuels and Lubricants. Appl. Catal. A Gen. 2006, 314 (2), 148–159. https://doi.org/10.1016/j.apcata.2006.08.012.Search in Google Scholar

186. Zhang, Y.; Niu, S.; Lu, C.; Gong, Z.; Hu, X. Catalytic Performance of NaAlO2/γ-Al2O3 as Heterogeneous Nanocatalyst for Biodiesel Production: Optimization Using Response Surface Methodology. Energy Convers. Manag. 2020, 203, 112263. https://doi.org/10.1016/j.enconman.2019.112263.Search in Google Scholar

187. Pu, Y.-C.; Li, S. R.; Yan, S.; Huang, X.; Wang, D.; Ye, Y. Y.; Liu, Y. Q. An Improved Cu/ZnO Catalyst Promoted by Sc2O3 for Hydrogen Production from Methanol Reforming. Fuel 2019, 241, 607–615. https://doi.org/10.1016/j.fuel.2018.12.067.Search in Google Scholar

188. Ma, F.; Hanna, M. A. Biodiesel Production: A Review. Bioresour. Technol. 1999, 70 (1), 1–15. https://doi.org/10.1016/s0960-8524(99)00025-5.Search in Google Scholar

189. Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Nickel Nanoparticles: An Ecofriendly and Reusable Catalyst for the Synthesis of 3, 4-Dihydropyrimidine-2(1H)-Ones via Biginelli Reaction. Bull. Korean Chem. Soc. 2010, 31 (2), 351–354. https://doi.org/10.5012/bkcs.2010.31.02.351.Search in Google Scholar

190. Safari, J.; Zarnegar, Z. Brønsted Acidic Ionic Liquid Based Magnetic Nanoparticles: A New Promoter for the Biginelli Synthesis of 3, 4-Dihydropyrimidin-2(1H)-Ones/Thiones. New J. Chem. 2014, 38 (1), 358–365. https://doi.org/10.1039/c3nj01065a.Search in Google Scholar

191. Zhang, Q.; Zhou, J. H.; Tan, L. X.; Zhang, S. Y.; Sun, J. K. Immobilizing Metal Nanoparticles on Hierarchically Porous Organic Cages with Size Control for Enhanced Catalysis. ACS Appl. Mater. Interfaces 2023, 15 (19), 23671–23678. https://doi.org/10.1021/acsami.3c02779.Search in Google Scholar PubMed

192. Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-Supported Nanocomposites for Environmental Application: A Review. Chem. Eng. J. 2011, 170 (2–3), 381–394. https://doi.org/10.1016/j.cej.2011.02.071.Search in Google Scholar

193. Lei, C.; Shin, Y.; Magnuson, J. K.; Fryxell, G.; Lasure, L. L.; Elliott, D. C.; Liu, J.; Ackerman, E. J. Characterization of Functionalized Nanoporous Supports for Protein Confinement. Nanotechnology 2006, 17 (22), 5531. https://doi.org/10.1088/0957-4484/17/22/001.Search in Google Scholar PubMed

194. Ismail, B.; Nielsen, S. Invited Review: Plasmin Protease in Milk: Current Knowledge and Relevance to Dairy Industry. J. Dairy Sci. 2010, 93 (11), 4999–5009. https://doi.org/10.3168/jds.2010-3122.Search in Google Scholar PubMed

195. Doherty, S.; Knight, J. G.; Carroll, M. A.; Ellison, J. R.; Hobson, S. J.; Stevens, S.; Hardacre, C.; Goodrich, P. Efficient and Selective Hydrogen Peroxide-Mediated Oxidation of Sulfides in Batch and Segmented and Continuous Flow Using a Peroxometalate-Based Polymer Immobilised Ionic Liquid Phase Catalyst. Green Chem. 2015, 17 (3), 1559–1571. https://doi.org/10.1039/c4gc01770f.Search in Google Scholar

196. Gabriel, R.; Carvalho, S. H. D.; Duarte, J. L. D. S.; Oliveira, L. M.; Giannakoudakis, D. A.; Triantafyllidis, K. S.; Soletti, J. I.; Meili, L. Mixed Metal Oxides Derived from Layered Double Hydroxide as Catalysts for Biodiesel Production. Appl. Catal. A Gen. 2022, 630, 118470. https://doi.org/10.1016/j.apcata.2021.118470.Search in Google Scholar

197. Chesney, A. Selected Highlights in the Application of Ion-Exchangers. As Supports for Reagents in Organic Synthesis. Green Chem. 1999, 1 (5), 209–219. https://doi.org/10.1039/a905804d.Search in Google Scholar

198. Gaona, A.; Diaz, U.; Corma, A. Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo) Aluminosilicate Layers for C–C Bond Forming Reactions and Tandem Processes. Chem. Mater. 2017, 29 (4), 1599–1612. https://doi.org/10.1021/acs.chemmater.6b04563.Search in Google Scholar

199. Parangi, T.; Mishra, M. K. Solid Acid Catalysts for Biodiesel Production. Comments Inorg. Chem. 2020, 40 (4), 176–216. https://doi.org/10.1080/02603594.2020.1755273.Search in Google Scholar

200. Prieto, G.; Zečević, J.; Friedrich, H.; de Jong, K. P.; de Jongh, P. E. Towards Stable Catalysts by Controlling Collective Properties of Supported Metal Nanoparticles. Nat. Mater. 2013, 12 (1), 34–39. https://doi.org/10.1038/nmat3471.Search in Google Scholar PubMed

201. Smith, K.; El-Hiti, G. A. Use of Zeolites for Greener and More Para-Selective Electrophilic Aromatic Substitution Reactions. Green Chem. 2011, 13 (7), 1579–1608. https://doi.org/10.1039/c0gc00689k.Search in Google Scholar

202. Hao, W.; Zhang, W.; Guo, Z.; Ma, J.; Li, R. Mesoporous Beta Zeolite Catalysts for Benzylation of Naphthalene: Effect of Pore Structure and Acidity. Catalysts 2018, 8 (11), 504. https://doi.org/10.3390/catal8110504.Search in Google Scholar

203. Azerad, R. Chemical Biotechnology-Better Enzymes for Green Chemistry-Editorial Overview; Elsevier Sci LTD: The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, 2001; pp. 533–534.10.1016/S0958-1669(01)00259-2Search in Google Scholar

204. Kovács, A.; Yusupov, M.; Cornet, I.; Billen, P.; Neyts, E. C. Effect of Natural Deep Eutectic Solvents of Non-Eutectic Compositions on Enzyme Stability. J. Mol. Liq. 2022, 366, 120180. https://doi.org/10.1016/j.molliq.2022.120180.Search in Google Scholar

205. Wang, X.; Quan, Z.; Wang, F.; Wang, M.; Zhang, Z.; Li, Z. PEG-SO3H as Catalyst for 3, 4-Dihydropyrimidones via Biginelli Reaction Under Microwave and Solvent-Free Conditions. Synth. Commun. 2006, 36 (4), 451–456. https://doi.org/10.1080/00397910500383519.Search in Google Scholar

206. Biswas, K.; Ghosh, S.; Basu, B. Ion-Exchange Resins and Polypeptide Supported Catalysts: A Critical Review. Curr. Green Chem. 2020, 7 (1), 40–52. https://doi.org/10.2174/2213346107666200204125435.Search in Google Scholar

207. Qin, L.; Ru, R.; Mao, J.; Meng, Q.; Fan, Z.; Li, X.; Zhang, G. Assembly of MOFs/Polymer Hydrogel Derived Fe3O4-CuO@ Hollow Carbon Spheres for Photochemical Oxidation: Freezing Replacement for Structural Adjustment. Appl. Catal. B Environ. 2020, 269, 118754. https://doi.org/10.1016/j.apcatb.2020.118754.Search in Google Scholar

208. Linkwitz, M.; Eilks, I. Experimente mit immobilisierten Enzymen als Beitrag zum Lernen über Grüne Chemie im Chemieunterricht. Chemkon-Chem. Konkret 2022, 29 (5).Search in Google Scholar

209. Ludwig, J. R.; Schindler, C. S. Catalyst: Sustainable Catalysis. Chem 2017, 2 (3), 313–316. https://doi.org/10.1016/j.chempr.2017.02.014.Search in Google Scholar

210. Li, P.; Regati, S.; Butcher, R. J.; Arman, H. D.; Chen, Z.; Xiang, S.; Chen, B.; Zhao, C. G. Hydrogen-Bonding 2D Metal–Organic Solids as Highly Robust and Efficient Heterogeneous Green Catalysts for Biginelli Reaction. Tetrahedron Lett. 2011, 52 (47), 6220–6222. https://doi.org/10.1016/j.tetlet.2011.09.099.Search in Google Scholar PubMed PubMed Central

211. Bordet, A.; Moos, G.; Welsh, C.; Licence, P.; Luska, K. L.; Leitner, W. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catal. 2020, 10 (23), 13904–13912. https://doi.org/10.1021/acscatal.0c03559.Search in Google Scholar PubMed PubMed Central

212. Egorova, K. S.; Ananikov, V. P. Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angew. Chem., Int. Ed. 2016, 55 (40), 12150–12162. https://doi.org/10.1002/anie.201603777.Search in Google Scholar PubMed

213. Deshpande, N.; Ahn, C.; Koli, R.; Jamadar, A.; Kim, D.; Kim, Y.; Jung, S.; Cho, H. Controlled Nanostructured Morphology of BiVO4 Photoanodes for Efficient On-Demand Catalysis in Solar Water-Splitting and Sustainable Water-Treatment. Appl. Surf. Sci. 2020, 514, 146075. https://doi.org/10.1016/j.apsusc.2020.146075.Search in Google Scholar

214. Gao, M.; Zhang, D.; Li, W.; Chang, J.; Lin, Q.; Xu, D.; Ma, H. Degradation of Methylene Blue in a Heterogeneous Fenton Reaction Catalyzed by Chitosan Crosslinked Ferrous Complex. J. Taiwan Inst. Chem. Eng. 2016, 67, 355–361. https://doi.org/10.1016/j.jtice.2016.08.010.Search in Google Scholar

215. Bai, Z.; Yang, Q.; Wang, J. Degradation of Sulfamethazine Antibiotics in Fenton-Like System Using Fe3O4 Magnetic Nanoparticles as Catalyst. Environ. Prog. Sustain. Energy 2017, 36 (6), 1743–1753. https://doi.org/10.1002/ep.12639.Search in Google Scholar

216. Schlexer, P. Computational Modeling in Heterogeneous Catalysis. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017.10.1016/B978-0-12-409547-2.14273-8Search in Google Scholar

217. Reuter, K.; Stampf, C.; Scheffler, M. Ab Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions. In Handbook of Materials Modeling; Springer Netherlands: Dordrecht, 2005; pp 149–194.10.1007/1-4020-3286-2_10Search in Google Scholar

218. Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis; John Wiley & Sons: Hoboken, New Jersey, USA, 2014.10.1002/9781118892114Search in Google Scholar

219. Chen, B. W.; Xu, L.; Mavrikakis, M. Computational Methods in Heterogeneous Catalysis. Chem. Rev. 2020, 121 (2), 1007–1048. https://doi.org/10.1021/acs.chemrev.0c01060.Search in Google Scholar PubMed

220. Brønsted, J.; Pedersen, K. Die katalytische Zersetzung des Nitramids und ihre physikalisch-chemische Bedeutung. Z. Phys. Chem. 1924, 108 (1), 185–235.10.1515/zpch-1924-10814Search in Google Scholar

221. Grajciar, L.; Heard, C. J.; Bondarenko, A. A.; Polynski, M. V.; Meeprasert, J.; Pidko, E. A.; Nachtigall, P. Towards Operando Computational Modeling in Heterogeneous Catalysis. Chem. Soc. Rev. 2018, 47 (22), 8307–8348. https://doi.org/10.1039/c8cs00398j.Search in Google Scholar PubMed PubMed Central

Received: 2025-07-26
Accepted: 2025-10-16
Published Online: 2025-11-05

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0575/html
Scroll to top button