Nano-sized titanium dioxide-reinforced poly(vinyl alcohol) (PVA) nanocomposite polymer electrolyte (NCPE) as proton conductor in electric double layer capacitor (EDLC)
Abstract
A solution-casted poly(vinyl alcohol)/ammonium acetate/titanium dioxide (PVA/CH3COONH4/TiO2) nanocomposite polymer electrolyte (NCPE) exhibits an enhancement in ionic conductivity from 1.91 × 10−4 S/cm to 4.60 × 10−4 S/cm upon doping of 10 wt% of nano-sized TiO2 and follows a Grotthuss-type proton conduction mechanism. Fourier Transform Infrared (FTIR) study confirms the complexation among PVA, CH3COONH4 and TiO2. The NCPE exhibits a wide electrochemical window of 4.66 V and demonstrates thermal stability up to 700 °C, as shown in linear sweep voltammetry (LSV) and thermogravimetric analysis (TGA), respectively. The transference number analysis demonstrates that the proton is the charge carrier in the conduction mechanism, and doping of nano-sized TiO2 improves the ionic mobility and ionic diffusion coefficient. Differential scanning calorimetry (DSC) results show that the glass transition temperature (T g ) is only affected by the impregnation of CH3COONH4, while doping of nano-sized TiO2 has a negligible effect on T g . Electric double layer capacitors (EDLCs) were fabricated using filler-free SPE and the most conducting NCPE with two identical carbon-based electrodes. Cyclic voltammetry (CV) analysis shows that doping of nano-sized filler improves the specific capacitance (C sp ) from 1.05 to 11.35 F g−1. Galvanostatic charge-discharge (GCD) shows good cycling stability up to 500 cycles.
Funding source: Ministry of Higher Education, Malaysia
Award Identifier / Grant number: FRGS/1/2023/STG05/TARUMT/02/1
Acknowledgments
This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2023/STG05/TARUMT/02/1) from the Ministry of Higher Education, Malaysia.
- 
Research ethics: Not applicable. 
- 
Informed consent: Not applicable. 
- 
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. 
- 
Use of Large Language Models, AI and Machine Learning Tools: Not applicable. 
- 
Conflict of interest: All authors state no conflict of interest. 
- 
Research funding: This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2023/STG05/TARUMT/02/1) from the Ministry of Higher Education, Malaysia. 
- 
Data availability: Not applicable. 
References
1. Eslami, Z.; Elkoun, S.; Robert, M.; Adjallé, K. A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules 2023, 28, 6637. https://doi.org/10.3390/molecules28186637.Search in Google Scholar PubMed PubMed Central
2. Buettner, C. S.; Cognigni, A.; Schröder, C.; Bica-Schröder, K. Surface-Active Ionic Liquids: A Review. J. Mol. Liq. 2022, 347, 118160. https://doi.org/10.1016/j.molliq.2021.118160.Search in Google Scholar
3. Yang, X.; Liu, J.; Pei, N.; Chen, Z.; Li, R.; Fu, L.; Zhang, P.; Zhao, J. The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery. Nanomicro Lett. 2023, 15, 74. https://doi.org/10.1007/s40820-023-01051-3.Search in Google Scholar PubMed PubMed Central
4. Xu, C.; Wang, Z.; Jiao, W.; Sun, Q.; Zhang, Q.; Li, C.; Wang, S.; Ma, Y.; He, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L. High Performance of Solid Electrolyte Endowed by SiO2 Cross-Linking Agent Towards Lithium Metal Battery. J. Alloys Compd. 2023, 966, 171548. https://doi.org/10.1016/j.jallcom.2023.171548.Search in Google Scholar
5. Ganta, K. K.; Jeedi, V. R.; Katrapally, V. K.; Yalla, M.; Emmadi, L. N. Effect of TiO2 Nano-Filler on Electrical Properties of Na+ Ion Conducting PEO/PVDF Based Blended Polymer Electrolyte. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3430–3440. https://doi.org/10.1007/s10904-021-01947-w.Search in Google Scholar
6. Sasikumar, M.; Krishna, R. H.; Raja, M.; Therese, H. A.; Balakrishnan, N. T. M.; Raghavan, P.; Sivakumar, P. Titanium Dioxide Nano-Ceramic Filler in Solid Polymer Electrolytes: Strategy Towards Suppressed Dendrite Formation and Enhanced Electrochemical Performance for Safe Lithium Ion Batteries. J. Alloys Compd. 2021, 882, 160709. https://doi.org/10.1016/j.jallcom.2021.160709.Search in Google Scholar
7. Liu, B.; Zhang, J.; Guo, H. Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes (Basel) 2022, 12, 347. https://doi.org/10.3390/membranes12030347.Search in Google Scholar PubMed PubMed Central
8. Brza, M. A.; Aziz, S. B.; Nofal, M. M.; Saeed, S. R.; Al-Zangana, S.; Karim, W. O.; Hussen, S. A.; Abdulwahid, R. T.; Kadir, M. F. Z. Drawbacks of Low Lattice Energy Ammonium Salts for Ion-Conducting Polymer Electrolyte Preparation: Structural, Morphological and Electrical Characteristics of CS:PEO:NH4BF4-Based Polymer Blend Electrolytes. Polymers (Basel) 2020, 12, 1885. https://doi.org/10.3390/polym12091885.Search in Google Scholar PubMed PubMed Central
9. Yap, Y. L.; You, A. H.; Teo, L. L.; Hanapei, H. Inorganic Filler Sizes Effect on Ionic Conductivity in Polyethylene Oxide (PEO) Composite Polymer Electrolyte. Int. J. Electrochem. Sci. 2013, 8, 2154–2163. https://doi.org/10.1016/S1452-3981(23)14298-2.Search in Google Scholar
10. Jothi, M. A.; Vanitha, D.; Sundaramahalingam, K.; Nallamuthu, N. Utilisation of Corn Starch in Production of ‘Eco Friendly’ Polymer Electrolytes for Proton Battery Applications. Int. J. Hydrogen Energy 2022, 47, 28763–28772. https://doi.org/10.1016/j.ijhydene.2022.06.192.Search in Google Scholar
11. Saeed, M. A. M.; Abdullah, O. Gh. Effect of Structural Features on Ionic Conductivity and Dielectric Response of PVA Proton Conductor-based Solid Polymer Electrolytes. J. Electron. Mater. 2021, 50, 432–442. https://doi.org/10.1007/s11664-020-08577-x.Search in Google Scholar
12. Li, C.; Huang, Y.; Chen, C.; Feng, X.; Zhang, Z. High-Performance Polymer Electrolyte Membrane Modified with Isocyanate-Grafted Ti3+ Doped TiO2 Nanowires for Lithium Batteries. Appl. Surf. Sci. 2021, 563, 150248. https://doi.org/10.1016/j.apsusc.2021.150248.Search in Google Scholar
13. Jayanthi, S.; Parangusan, H.; babu, A.; Balakrishnan, S.; Ponnamma, D. Fabrication of Free Standing Nano-SiO2 Incorporated Solid Polymer Electrolytes Based on Poly(Vinyl) Chloride. Ionics (Kiel) 2024, 30, 7083–7096. https://doi.org/10.1007/s11581-024-05787-9.Search in Google Scholar
14. Saeed, A.; Guizani, I.; Hanash, F. E.; Asnag, G. M.; Al-Harthi, A. M.; Alwafi, R.; Qahtan, T. F.; Morsi, M. A.; Assran, A. S. Enhancing Optical, Structural, Thermal, Electrical Properties, and Antibacterial Activity in Chitosan/Polyvinyl Alcohol Blend with Zno Nanorods: Polymer Nanocomposites for Optoelectronics and Food/Medical Packaging Applications. Polym. Bull. 2024, 81, 11645–11670. https://doi.org/10.1007/s00289-024-05270-5.Search in Google Scholar
15. Alshehri, A. M.; Almalki, A.; Menazea, A. A.; El-Morsy, M. A. Dielectric and Optical Behavior of Chitosan-Poly Vinyl Alcohol Blend-based Composites with Different Insertions of Titanium Dioxide and Cobalt Mixed Oxide. Mater. Chem. Phys. 2025, 130657. https://doi.org/10.1016/j.matchemphys.2025.130657.Search in Google Scholar
16. Aziz, S. B.; Abdulwahid, R. T. F. Z.; F Z Kadir, M.; Ghareeb, H. O.; Ahamad, T.; Alshehri, S. M. Design of Non-faradaic EDLC from Plasticized MC Based Polymer Electrolyte with an Energy Density Close to Lead-Acid Batteries. J. Ind. Eng. Chem. 2022, 105, 414–426. https://doi.org/10.1016/j.jiec.2021.09.042.Search in Google Scholar
17. Karakoti, M.; Jangra, R.; Pandey, S.; Dhapola, P. S.; Dhali, S.; Mahendia, S.; Singh, P. K.; Sahoo, N. G. Binder-Free Reduced Graphene Oxide as Electrode Material for Efficient Supercapacitor with Aqueous and Polymer Electrolytes. High Perform. Polym. 2020, 32, 175–182. https://doi.org/10.1177/0954008320905659.Search in Google Scholar
18. Kumar, S.; Singh, P. K.; Punetha, V. D.; Singh, A.; Strzałkowski, K.; Singh, D.; Yahya, M. Z. A.; Savilov, S. V.; Dhapola, P. S.; Singh, M. K. In-Situ N/O-Heteroatom Enriched Micro-/Mesoporous Activated Carbon Derived from Natural Waste Honeycomb and Paper Wasp Hive and its Application in quasi-solid-state Supercapacitor. J. Energy Storage 2023, 72, 108722. https://doi.org/10.1016/j.est.2023.108722.Search in Google Scholar
19. Mohamed, A. S.; Asnawi, A. S. F. M.; Shukur, M. F.; Matmin, J.; Kadir, M. F. Z.; Yusof, Y. M. The Development of Chitosan-Maltodextrin Polymer Electrolyte with the Addition of Ionic Liquid for Electrochemical Double Layer Capacitor (EDLC) Application. Int. J. Electrochem. Sci. 2022, 17, 22034. https://doi.org/10.20964/2022.03.30.Search in Google Scholar
20. Hwang, M.; Jeong, J. S.; Lee, J. C.; Yu, S.; Jung, H. S.; Cho, B. S.; Kim, K. Y. Composite Solid Polymer Electrolyte with Silica Filler for Structural Supercapacitor Applications. Korean J. Chem. Eng. 2021, 38, 454–460. https://doi.org/10.1007/s11814-020-0695-y.Search in Google Scholar
21. Sadiq, M.; Tanwar, S.; Raza, M. M. H.; Aalam, S. M.; Sarvar, M.; Zulfequar, M.; Sharma, A. L.; Ali, J. High Performance of the Sodium-Ion Conducting Flexible Polymer Blend Composite Electrolytes for Electrochemical Double-Layer Supercapacitor Applications. Energy Storage 2022, 4. https://doi.org/10.1002/est2.345.Search in Google Scholar
22. Alam, T.; Das, A. LLZO‐Assisted PEO-PVDF Blend-based Polymer Electrolytes for Device Application. J. Appl. Polym. Sci. 2025, e58007. https://doi.org/10.1002/app.58007.Search in Google Scholar
23. Sadiq, M.; Khan, M. A.; Raza, M. M. H.; Zulfequar, M.; Ali, J. Improved Performance of Biopolymer Composite Electrolyte Based Cellulose Acetate/Zinc Oxide Filler for Supercapacitors. Energy Environ. 2024, 35, 2888–2910. https://doi.org/10.1177/0958305X231159443.Search in Google Scholar
24. Lim, C. S.; Teoh, K. H.; Liew, C. W.; Ramesh, S. Capacitive Behavior Studies on Electrical Double Layer Capacitor Using Poly (Vinyl Alcohol)–Lithium Perchlorate Based Polymer Electrolyte Incorporated with TiO2. Mater. Chem. Phys. 2014, 143, 661–667. https://doi.org/10.1016/j.matchemphys.2013.09.051.Search in Google Scholar
© 2025 IUPAC & De Gruyter