Home Physical Sciences Synthesis and characterization of adamantane and tricyclodecane-containing epoxy resin for optoelectronics applications
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterization of adamantane and tricyclodecane-containing epoxy resin for optoelectronics applications

  • Je-Chuang Wang , Kuo-Hui Wu ORCID logo EMAIL logo , Yin-Chiung Chang , Wen-Chien Huang and Chih-Wei Tsai
Published/Copyright: September 16, 2025

Abstract

Adamantane-based epoxy resin (ADEP) and tricyclodecyl modified adamantane-based epoxy resin (ADTCDEP) were synthesized and their chemical structures were confirmed by FT-IR, 1H, and 13C NMR spectroscopy. The morphological, thermal, dielectric, and optical properties of ADEP and ADTCDEP were studied. The introduction of adamantane and tricyclodecane groups into the chain of epoxy resins improves thermal, mechanical, and dielectric properties. In addition, UV–vis transmission spectroscopy showed that the tricyclodecyl-containing epoxy membrane exhibited novel UV filtering properties and thermo-oxidative stability. ADEP exhibits novel UV filtering properties, and the cut-off wavelength λc can be changed by simply changing the heat-aging temperature. ADTCDEP maintains approximately 85 % transmittance in the visible region (700 nm) and exhibits good heat resistance and better transmittance than EP904 even after heat aging in air at 120 °C/168 h.


Corresponding author: Kuo-Hui Wu, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, e-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

1. Deng, Y.; Wong, Y. W.; Teh, L. K. Y.; Wang, Q.; Sun, W.; Chern, W. K.; Oh, J. T.; Chen, Z. Optimizing Dielectric, Mechanical, and Thermal Properties of Epoxy Resin through Molecular Design for Multifunctional Performance. Mater. Horiz. 2025, 12, 1323–1333. https://doi.org/10.1039/d4mh01414f.Search in Google Scholar PubMed

2. Xie, Z.; Tian, Y.; Xu, Y.; Zhong, F.; Li, S.; Zhu, X.; Yuan, Q.; Yuan, Q. Molecular Design of Epoxy Resin and the Driving Forces in Adhesion with Cementitious Materials. Appl. Surf. Sci. 2025, 689, 162498. https://doi.org/10.1016/j.apsusc.2025.162498.Search in Google Scholar

3. Fekiač, J. J.; Krbata, M.; Kohutiar, M.; Janík, R.; Kakošová, L.; Breznická, A.; Eckert, M.; Mikuš, P. Comprehensive Review: Optimization of Epoxy Composites, Mechanical Properties, & Technological Trends. Polymers 2025, 17, 271. https://doi.org/10.3390/polym17030271.Search in Google Scholar PubMed PubMed Central

4. Wang, Q.; Deng, Y.; Yap, M.; Yang, Y.; Ma, J.; Chern, W. K.; Li, J.; Chen, Z. Electrical Tree Modelling in Dielectric Polymers Using a Phase-Field Regularized Cohesive Zone Model. Mater. Des. 2023, 235, 112409; https://doi.org/10.1016/j.matdes.2023.112409.Search in Google Scholar

5. Mohit, H.; Mavinkere Rangappa, S.; Gapsari, F.; Siengchin, S.; Marwani, H. M.; Khan, A.; Asiri, A. M. Effect of Bio-Fibers and Inorganic Fillers Reinforcement on Mechanical and Thermal Characteristics on Carbon-Kevlar-Basalt-Innegra Fiber Bio/Synthetic Epoxy Hybrid Composites. J. Mater. Res. Technol. 2023, 23, 5440–5458. https://doi.org/10.1016/j.jmrt.2023.02.162.Search in Google Scholar

6. Shao, X.; Zhao, P.; Tian, Z.; Zhang, N.; Wang, H.; Li, X.; Cui, X.; Hou, X.; Deng, T. A. Novel Bio-Based Anhydride Curing Agent for the Synthesis of High-Performance Epoxy Resin. Polym. Degrad. Stab. 2024, 229, 110979. https://doi.org/10.1016/j.polymdegradstab.2024.110979.Search in Google Scholar

7. Kilic, A.; D’Elia, V.; Aytar, E.; Phungpanya, C.; Aslanli, F. Synthesis of Cyclic Carbonates from CO2 and Epoxides by Novel Metal and Halide-free Chiral Boron Compounds. Tetrahedron 2025, 174, 134485. https://doi.org/10.1016/j.tet.2025.134485.Search in Google Scholar

8. Wu, D.; Xing, Y.; Zhang, D.; Hao, Z.; Dong, Q.; Han, Y.; Liu, L.; Wang, M.; Zhang, R. Optimized Interfacial Compatibility of Carbon Fiber and Epoxy Resin via Controllable Thickness and Activated Ingredients of Polydopamine Layer. Carbon Lett. 2024, 34, 351–359. https://doi.org/10.1007/s42823-023-00638-5.Search in Google Scholar

9. Wu, Q.; Razzak, A.; Bai, H.; Deng, H.; Ye, Z.; Zhu, J. Dopamine Concentration-Dependent Surface Modification for Gaining Carbon Fiber Composites with Enhanced Interfacial Adhesion. Compos. Commun. 2022, 29, 101047. https://doi.org/10.1016/j.coco.2021.101047.Search in Google Scholar

10. Bhavith, K.; Prashanth Pai, M.; Sudheer, M.; Ramachandra, C. G.; Maruthi Prashanth, B. H.; Kiran Kumar, B. The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites. Eng. Proc. 2023, 59, 200. https://doi.org/10.3390/engproc2023059200.Search in Google Scholar

11. Su, C.; Wang, X.; Ding, L.; Wu, Z. Enhancement of Mechanical Behavior of FRP Composites Modified by Silica Nanoparticles. Constr. Build. Mater. 2020, 262, 120769. https://doi.org/10.1016/j.conbuildmat.2020.120769.Search in Google Scholar

12. Chen, J.; Pei, Z.; Chai, B.; Jiang, P.; Ma, L.; Zhu, L.; Huang, X. Engineering the Dielectric Constants of Polymers: From Molecular to Mesoscopic Scales. Adv. Mater. 2024, 36, 2308670. https://doi.org/10.1002/adma.202308670.Search in Google Scholar PubMed

13. Mohan, P. A Critical Review: The Modification, Properties, and Applications of Epoxy Resins. Polym. Plast. Technol. Eng. 2013, 52, 107–125. https://doi.org/10.1080/03602559.2012.727057.Search in Google Scholar

14. Chen, C. S.; Bulkin, B. J.; Pearce, E. M. New Epoxy Resins. II. The Preparation, Characterization, and Curing of Epoxy Resins and Their Copolymers. J. Appl. Polym. Sci. 1982, 27, 3289–3312. https://doi.org/10.1002/app.1982.070270909.Search in Google Scholar

15. Lee, T. M.; Ma, C. C. M.; Hsu, C. W.; Wu, H. L. Syntheses of Epoxy-Bridged Polyorganosiloxanes and the Effects of Terminated Alkoxysilanes on Cured Thermal Properties. J. Appl. Polym. Sci. 2006, 99, 3491–3499. https://doi.org/10.1002/app.22973.Search in Google Scholar

16. Fu, F.; Zhou, X.; Shen, M.; Wang, D.; Xu, X.; Shang, S.; Song, Z.; Song, J. Preparation and Characterization of Room-Temperature-Vulcanized Silicone Rubber Using Acrylpimaric Acid-Modified Aminopropyltriethoxysilane as a Cross-Linking Agent. ACS Sustain. Chem. Eng. 2023, 11, 5973–5985. https://doi.org/10.1021/acssuschemeng.2c07698.Search in Google Scholar

17. Wu, K. H.; Tsai, C. W.; Huang, W. C.; Hung, W. C. Structural Design and Characterization of Tricycloalkyl-Containing Methacrylate with Methyl Methacrylate Copolymers. Mater. Sci. Eng. B 2021, 267, 115088. https://doi.org/10.1016/j.mseb.2021.115088.Search in Google Scholar

18. JayaKrishnaKumar, S.; Rajkumar, G.; Kumar, S. A.; Geethakumari, R.; Kumar, S. A.; Geethakumari, R. Chemical Characterization of Denture Base Resin with a Novel Cycloaliphatic Monomer. J. Contemp. Dent. Pract. 2019, 20, 940–946. https://doi.org/10.5005/jp-journals-10024-2634.Search in Google Scholar

19. Chang, Y. C.; Wu, K. H.; Huang, W. C.; Wang, J. C. Synthesis and Characterization of Tricyclodecyl-Containing Methacrylate Polymer for Optoelectronics Applications. Pure Appl. Chem. 2025, 97, 361–371. https://doi.org/10.1515/pac-2024-0401.Search in Google Scholar

20. Tsai, C. W.; Wu, K. H.; Yang, C. C.; Wang, G. P. Adamantane-based Epoxy Resin and Siloxane-Modified Adamantine-Based Epoxy Resin: Characterization of Thermal, Dielectric and Optical Properties. React. Funct. Polym. 2015, 91-92, 11–18. https://doi.org/10.1016/j.reactfunctpolym.2015.04.002.Search in Google Scholar

21. Chu, X.; Wang, L.; Li, J.; Xu, H. Surface Chemical Microenvironment Engineering of Catalysts by Organic Molecules for Boosting Electrocatalytic Reaction. Chinese Chem. Lett. 2024, 35, 109105. https://doi.org/10.1016/j.cclet.2023.109105.Search in Google Scholar

22. Sharme, R. K.; Quijada, M.; Terrones, M. O.; Rana, M. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. Materials 2024, 17, 4559. https://doi.org/10.3390/ma17184559.Search in Google Scholar PubMed PubMed Central

23. Fang, P. F.; Yu, C. Y.; Chen, Z.; Chen, Y. Y. Ultraviolet-Light-Filtering Behavior of Fullerene–Amine Derivative/chitosan Blended Membranes. Polymer 2006, 47, 4341–4347. https://doi.org/10.1016/j.polymer.2006.04.009.Search in Google Scholar

24. Wang, X.; Mao, L. L.; Luo, M.; Fang, P. F.; Dai, Y. Q.; Liew, K. M. Study of Fullerene-Containing Epoxy Membranes with Tunable Ultraviolet Light-Filtering Properties. Prog. Org. Coat. 2010, 67, 398–404. https://doi.org/10.1016/j.porgcoat.2009.12.009.Search in Google Scholar

Received: 2025-07-16
Accepted: 2025-09-08
Published Online: 2025-09-16

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0567/html
Scroll to top button