Home Exploring thiazole based thiosemicarbazide as a potent inhibitor of acetylcholinesterase and butyrylcholinesterase enzyme and their molecular docking studies
Article
Licensed
Unlicensed Requires Authentication

Exploring thiazole based thiosemicarbazide as a potent inhibitor of acetylcholinesterase and butyrylcholinesterase enzyme and their molecular docking studies

  • Muhammad Taha ORCID logo EMAIL logo , Leena Sheikh , Bushra Adalat , Syahrul Imran , Fazal Rahim , Muhammad Nawaz , Nizam Uddin , Khalid Mohammed Khan and Syed Adnan Ali Shah
Published/Copyright: October 29, 2025

Abstract

Based on the pharmacological significance of thiazole derivatives, we synthesized hybrid analogs of thiazole containing thiosemicarbazide moiety and screened them for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. Most of the examined substances showed preference for BChE over AChE. However, analog 3 was found to be dual inhibitor of both AChE and BChE with IC50 value of 0.15 ± 0.01 for AChE and 0.15 ± 0.01 for BChE when compared with the standard drug donepezil (IC50 = 0.016 ± 0.01 for AChE and 0.30 ± 0.010 for BChE). Analogs 1, 3, 9 and 13 found to be selective inhibitor of BChE having IC50 value ranging from 0.20 ± 0.01 to 0.35 ± 0.01. Molecular docking research conducted to investigate the binding insights into the enzyme. According to the binding mode study, all these inhibitors comfortably accommodated in the active sites of the enzymes BChE.


Corresponding author: Muhammad Taha, Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia, e-mail:

Acknowledgments

Authors would like to thank Institute for Research and Medical Consultations (IRMC) at Imam Abdulrahman Bin Faisal University (IAU) for the laboratory facilities.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conception: Muhammad Taha, Leena sheik, Bushra Adalat.; Execution: Muhammad Taha, Fazal Rahim, Muhammad Nawaz , Nizam Uddin.; Interpretation: Khalid Mohammad Khan, Syed Adnan Ali shah, Imran, S.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: We have no conflict of interest

  6. Research funding: None declared.

  7. Data availability: We have provided data as supplementary data.

References

1. Alzheimer’s Association, 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2020, 16, 391–460.10.1002/alz.12068Search in Google Scholar PubMed

2. Hebert, L. E.; Weuve, J.; Scherr, P. A.; Evans, D. A. Alzheimer Disease in the United States (2010–2050) Estimated Using the 2010 Census. Neurology 2013, 80, 1778–1783; https://doi.org/10.1212/wnl.0b013e31828726f5.Search in Google Scholar PubMed PubMed Central

3. Hussain, R.; Ullah, H.; Rahim, F.; Sarfraz, M.; Taha, M.; Iqbal, R.; Rehman, W.; Khan, S.; Shah, S. A. A.; Hyder, S.; Alhomrani, M.; Alamri, A. S.; Abdulaziz, O.; Abdelaziz, M. A. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules 2022, 27 (18), 6087; https://doi.org/10.3390/molecules27186087.Search in Google Scholar PubMed PubMed Central

4. Madav, Y.; Wairkar, S.; Prabhakar, B. Recent Therapeutic Strategies Targeting Beta Amyloid and Tauopathies in Alzheimer’s Disease. Brain Res. Bull. 2019, 146, 171–184; https://doi.org/10.1016/j.brainresbull.2019.01.004.Search in Google Scholar PubMed

5. Ferreira-Vieira, T. H.; Guimaraes, I. M.; Silva, F. R.; Ribeiro, F. M. Alzheimer’s Disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115; https://doi.org/10.2174/1570159x13666150716165726.Search in Google Scholar PubMed PubMed Central

6. Shan, W. J.; Huang, L.; Zhou, Q.; Meng, F. C.; Li, X. S. Synthesis, Biological Evaluation of 9-N-Substituted Berberine Derivatives as Multi-Functional Agents of Antioxidant, Inhibitors of Acetylcholinesterase, Butyrylcholinesterase and Amyloid-β Aggregation. Eur. J. Med. Chem. 2011, 46 (12), 5885–5893; https://doi.org/10.1016/j.ejmech.2011.09.051.Search in Google Scholar PubMed

7. Cassiano, D. S. A.; Reis, I. M. A.; Estrela, I. D. O.; de Freitas, H. F.; Pita, S. S. D. R.; David, J. M.; Branco, A. Acetylcholinesterase Inhibitory Activities and Bioguided Fractionation of the Ocotea percoriacea Extracts: HPLC-DAD-MS/MS Characterization and Molecular Modeling of their Alkaloids in the Active Fraction. Comput. Biol. Chem. 2019, 83, 107129; https://doi.org/10.1016/j.compbiolchem.2019.107129.Search in Google Scholar PubMed

8. Asen, N. D.; Aluko, R. E. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of Antioxidant Peptides Obtained from Enzymatic Pea Protein Hydrolysates and their Ultrafiltration Peptide Fractions. J. Food Biochem. 2022, 46 (11), e14289; https://doi.org/10.1111/jfbc.14289.Search in Google Scholar PubMed

9. Nordberg, A.; Ballard, C.; Bullock, R.; Darreh-Shori, T.; Somogyi, M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease. Prim. Care Companion CNS Disord. 2013, 15 (2), 26731; https://doi.org/10.4088/pcc.12r01412.Search in Google Scholar

10. Khan, Y.; Rehman, W.; Hussain, R.; Khan, S.; Malik, A.; Khan, M.; Liaqat, A.; Rasheed, L.; Begum, F.; Fazil, S.; Khan, I.; Abdellatif, M. H.; Abdellatif, M. H. New Biologically Potent Benzimidazole-Based-Triazole Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors Along with Molecular Docking Study. J. Heterocycl. Chem. 2022, 59 (12), 2225–2239; https://doi.org/10.1002/jhet.4553.Search in Google Scholar

11. Cetin Cakmak, K.; Gülçin, İ. Anticholinergic and Antioxidant Activities of Usnic Acid-an Activity-Structure Insight. Toxicol. Rep. 2019, 6, 1273–1280; https://doi.org/10.1016/j.toxrep.2019.11.003.Search in Google Scholar PubMed PubMed Central

12. Mamedova, G.; Mahmudova, A.; Mamedov, S.; Erden, Y.; Taslimi, P.; Tüzün, B.; Tas, R.; Farzaliyev, V.; Sujayev, A.; Alwasel, S. H.; Gulçin, İ. Novel Tribenzylaminobenzolsulphonylimine Based on Their Pyrazine and Pyridazines: Synthesis, Characterization, Antidiabetic, Anticancer, Anticholinergic, and Molecular Docking Studies. Bioorg. Chem. 2019, 93, 103313; https://doi.org/10.1016/j.bioorg.2019.103313.Search in Google Scholar PubMed

13. El-Sayed, N. A.; Farag, A. E.; Ezzat, M. A. F.; Akincioglu, H.; Gülçin, İ.; Abou-Seri, S. M. Design, Synthesis, In Vitro and In Vivo Evaluation of Novel Pyrrolizine-Based Compounds with Potential Activity as Cholinesterase Inhibitors and Anti-Alzheimer’s Agents. Bioorg. Chem. 2019, 93, 103312; https://doi.org/10.1016/j.bioorg.2019.103312.Search in Google Scholar PubMed

14. Srivastava, P.; Tripathi, P. N.; Sharma, P.; Shrivastava, S. K. Design, Synthesis, and Evaluation of Novel N-(4-Phenoxybenzyl)Aniline Derivatives Targeting Acetylcholinesterase, β-Amyloid Aggregation and Oxidative Stress to Treat Alzheimer’s Disease. Bioorg. Med. Chem. 2019, 27, 3650–3662. https://doi.org/10.1016/j.bmc.2019.07.001.Search in Google Scholar PubMed

15. Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Theraputic Strategies for Alzheimer’s Disease in Clinical Trials. Pharmacol. Rep. 2016, 68, 127–138. https://doi.org/10.1016/j.pharep.2015.07.006.Search in Google Scholar PubMed

16. Lalut, J.; Santoni, G.; Karila, D.; Lecoutey, C.; Davis, A.; Nachon, F.; Silman, I.; Sussman, J.; Weik, M.; Maurice, T.; Dallemagne, P.; Rochais, C. Novel Multitargetdirected Ligands Targeting Acetylcholinesterase and s1 Receptors as Lead Compounds for Treatment of Alzheimer’s disease: Synthesis, Evaluation, and Structural Characterization of Their Complexes with Acetylcholinesterase. Eur. J. Med. Chem. 2019, 162, 234–248; https://doi.org/10.1016/j.ejmech.2018.10.064.Search in Google Scholar PubMed

17. Kumar, A.; Singh, A.; Ekavali, A. Review on Alzheimer’s Disease Pathophysiology and its Management: An Update. Pharmacol. Rep. 2015, 67, 195–203; https://doi.org/10.1016/j.pharep.2014.09.004.Search in Google Scholar PubMed

18. Parthasarathy, A.; Borrego, E. J.; Savka, M. A.; Dobson, R. C.; Hudson, A. O. Amino Acid-Derived Defense Metabolites from Plants: A Potential Source to Facilitate Novel Antimicrobial Development. J. Biol. Chem. 2021, 296, 100438; https://doi.org/10.1016/j.jbc.2021.100438.Search in Google Scholar PubMed PubMed Central

19. D’Auria, M.; Racioppi, R.; Viggiani, L.; Zanirato, P. Photochemical Reactivity of 2-Azido-1,3-Thiazole and 2-Azido-1,3-Benzothiazole: A Procedure for the Aziridination of Enol Ethers. Eur. J. Org Chem. 2009, 2009, 932–937; https://doi.org/10.1002/ejoc.200800959.Search in Google Scholar

20. D’Auria, M. Ab Initio Study on the Photochemical Isomerization of Thiazole Derivatives. Tetrahedron 2002, 58, 8037–8042; https://doi.org/10.1016/s0040-4020-02-01003-7.Search in Google Scholar

21. Shen, S.-S.; Lei, M.-Y.; Wong, Y.-X.; Tong, M.-L.; Teo, P. L.-Y.; Chiba, S.; Narasaka, K. Intramolecular Nucleophilic Substitution at an sp2 Carbon: Synthesis of Substituted Thiazoles and Imidazole-2-Thiones. Tetrahedron Lett. 2009, 50, 3161–3163; https://doi.org/10.1016/j.tetlet.2008.12.118.Search in Google Scholar

22. Pinto, M.; Takahata, Y.; Atvars, T. Photophysical Properties of 2,5-Diphenyl-Thiazolo[5,4-d]Thiazole. J. Photochem. Photobiol. A Chem. 2001, 143, 119–127; https://doi.org/10.1016/s1010-6030-01-00520-2.Search in Google Scholar

23. Obushak, N. D.; Matiichuk, V. S.; Vasylyshin, R. Y.; Ostapyuk, Y. V. Heterocyclic Syntheses Based on Arylation Products of Unsaturated Compounds: X. 3-Aryl-2-Chloropropanals as Reagents for the Synthesis of 2-Amino-1,3-Thiazole Derivatives. Russ. J. Org. Chem. 2004, 40, 383–389; https://doi.org/10.1023/brujo-0000034976-7-646-85.Search in Google Scholar

24. Arduengo, A. J.III; Goerlich, J. R.; Marshall, W. J. A Stable Thiazol-2-Ylidene and its Dimer. Eur. J. Org Chem. 1997, 1997, 365–374; https://doi.org/10.1002/jlac.199719970213.Search in Google Scholar

25. Eissa, S. I.; Farrag, A. M.; Abbas, S. Y.; El Shehry, M. F.; Ragab, A.; Fayed, E. A.; Ammar, Y. A. Novel Structural Hybrids of Quinoline and Thiazole Moieties: Synthesis and Evaluation of Antibacterial and Antifungal Activities with Molecular Modeling Studies. Bioorg. Chem. 2021, 110, 104803.10.1016/j.bioorg.2021.104803Search in Google Scholar PubMed

26. Ye, J. Liu, Q.; Wang, C.; Meng, Q.; Sun, H.; Peng, J.; Ma, X.; Liu, K. Benzylpenicillin Inhibits the Renal Excretion of Acyclovir by OAT1 and OAT3. Pharmacol. Rep. 2013, 65, 505–512; https://doi.org/10.1016/s1734-1140-13-71026-0.Search in Google Scholar

27. Rahmutulla, B.; Matsushita, K.; Satoh, M.; Seimiya, M.; Tsuchida, S.; Kubo, S.; Shimada, H.; Ohtsuka, M.; Miyazaki, M.; Nomura, F. Alternative Splicing of FBP-Interacting Repressor Coordinates c-Myc, P27Kip1/cyclinE and Ku86/XRCC5 Expression as a Molecular Sensor for Bleomycin Induced DNA Damage Pathway. Oncotarget 2014, 15, 2404–2417; https://doi.org/10.18632/oncotarget.1650.Search in Google Scholar PubMed PubMed Central

28. Popsavin, M.; Torović, L.; Svirčev, M.; Kojić, V.; Bogdanović, G.; Popsavin, V. Synthesis and Antiproliferative Activity of Two New Tiazofurin Analogues with 20 –Amido Functionalities. Bioorg. Med. Chem. Lett. 2006, 16, 2773–2776; https://doi.org/10.1016/j.bmcl.2006.02.001.Search in Google Scholar PubMed

29. Wei, L.; Cheng, J.; Meng, Y.; Ren, Y.; Deng, H.; Guo, Y. A Novel Formulation of Thiamine Dilaurylsulphate and its Preservative Effect on Apple Juice and Sterilised Milk. Food Chem. 2014, 1, 415–422; https://doi.org/10.1016/j.foodchem.2013.11.159.Search in Google Scholar PubMed

30. Sevrioukova, I. F.; Poulos, T. L. Dissecting Cytochrome P450 3A4-Ligand Interactions Using Ritonavir Analogues. Biochemistry 2013, 52, 4474–4481; https://doi.org/10.1021/bi4005396.Search in Google Scholar PubMed

31. Novakova, I.; Subileau, E. A.; Toegel, S.; Gruber, D.; Lachmann, B.; Urban, E.; Chesne, C.; Noe, C. R.; Neuhaus, W. Transport Rankings of Nonsteroidal Anti-inflammatory Drugs Across Blood-Brain Barrier In Vitro Models. PLoS ONE 2014, 9, e86806; https://doi.org/10.1371/journal.pone.0086806.Search in Google Scholar PubMed PubMed Central

32. Coşkun, G. P.; Djikic, T.; Hayal, T. B.; Türkel, N.; Yelekçi, K.; Şahin, F.; Küçükgüzel, Ş. G. Synthesis, Molecular Docking and Anticancer Activity of Diflunisal Derivatives as Cyclooxygenase Enzyme Inhibitors. Molecules 2018, 23, 1969; https://doi.org/10.3390/molecules23081969.Search in Google Scholar PubMed PubMed Central

33. Kapron, B.; Czarnomysy, R.; Paneth, A.; Wujec, M.; Bielawski, K.; Bielawska, A.; Swiatek, L.; Rajtar, B.; Polz-Dacewicz, M.; Plech, T. Dual Antibacterial and Anticancer Activity of 4-benzoyl-1-dichlorobenzoylthiosemicarbazide Derivatives. Anti-Cancer Agents Med. Chem. 2018, 18, 529–540; https://doi.org/10.2174/1871520617666171023142958.Search in Google Scholar PubMed

34. Paneth, A.; St ˛aczek, P.; Plech, T.; Strzelczyk, A.; Janowska, D.; Stefa ´nska, J.; Dziko, K.; Wujec, M.; Kosiek, S.; Paneth, P. Synthesis and Antibacterial Activity of 1,4-Dibenzoylthiosemicarbazide Derivatives. Biomed. Pharmacother. 2017, 88, 1235–1242.10.1016/j.biopha.2017.02.001Search in Google Scholar

35. Pitucha, M.; Karczmarzyk, Z.; Swatko-Ossor, M.; Wysocki, W.; Fruzinski, A.; Wos, M.; Chudzik, K.; Ginalska, G.; Fruzi nski, A. Synthesis, In Vitro Screening and Docking Studies of New Thiosemicarbazide Derivatives as Antitubercular Agent. Mol. 2019, 24, 251; https://doi.org/10.3390/molecules24020251.Search in Google Scholar PubMed PubMed Central

36. Siwek, A.; Stefańska, J.; Dzitko, K.; Ruszczak, A. Antifungal Effect of 4-Arylthiosemicarbazides Against Candida Species. Search for Molecular Basis of Antifungal Activity of Thiosemicarbazide Derivatives. J. Mol. Model. 2012, 18, 4159–4170; https://doi.org/10.1007/s00894-012-1420-5.Search in Google Scholar PubMed PubMed Central

37. Wujec, M. K.; Kędzierska, E.; Kuśmierz, E.; Plech, T.; Wróbel, A.; Paneth, A.; Orzelska, J.; Fidecka, S.; Paneth, P. Pharmacological and Structure-Activity Relationship Evaluation of 4-Aryl-1-Diphenylacetyl (Thio) Semicarbazides. Molecules 2014, 19, 4745–4759; https://doi.org/10.3390/molecules19044745.Search in Google Scholar PubMed PubMed Central

38. Mansha, M.; Taha, M.; Anouar, E. H.; Ullah, N. The Design of Fluoroquinolone-Based Cholinesterase Inhibitors. Synthesis, Biological Evaluation and in Silico Docking Studies. Arab. J. Chem. 2021, 103211.10.1016/j.arabjc.2021.103211Search in Google Scholar

39. Rahim, F.; Javed, M. T.; Ullah, H.; Wadood, A.; Taha, M.; Ashraf, M. A.; Khan Khan, F.; Khan, M. A.; Khan, F.; Mirza, S.; Khan, K. M. Synthesis, Molecular Docking, Acetylcholinesterase and Butyrylcholinesterase Inhibitory Potential of Thiazole Analogs as New Inhibitors for Alzheimer Disease. Bioorg. Chem. 2015, 62, 106–116; https://doi.org/10.1016/j.bioorg.2015.08.002.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0549).


Received: 2025-06-18
Accepted: 2025-10-02
Published Online: 2025-10-29

© 2025 IUPAC & De Gruyter

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0549/pdf
Scroll to top button