Home Physical Sciences Effect of atomic layer deposition and alumina actions of optoelectronic behaviour of polyfluorene OLEDS
Article
Licensed
Unlicensed Requires Authentication

Effect of atomic layer deposition and alumina actions of optoelectronic behaviour of polyfluorene OLEDS

  • Gopal Kaliyaperumal , Nagabhooshanam Nagarajan , Sharad Rathore , Ankur Kulshreshta , Santha Sheela , Beulah David , Ramya Maranan , Murali Mohan ORCID logo EMAIL logo and Subbarayan Sathiyamurthy
Published/Copyright: November 4, 2025

Abstract

With unique properties such as enhanced photoluminescence (PL) efficiency, improved thermal stability, and favourable optical properties, polyfluorenes (PFs) are well-suited for organic light-emitting diode (OLED) applications. However, the conventional PF layers are found to have drawbacks, including variation in charge transport, which minimizes the overall PL efficiency due to uneven coating and photo-oxidation. Current research aims to overcome the above difficulties and to synthesize PF reinforced with alumina (Al2O3) nanoparticles (3 wt%) along with encapsulation coating via Atomic Layer Deposition (ALD) and investigates the influence of varying encapsulation coating thicknesses (0, 10, 30, and 50 nm) in the enhancement of optoelectronic performances and operational stability. The fabricated devices were characterized using electroluminescence (EL) spectra, external quantum efficiency (EQE), current–voltage (I–V) plots, and encapsulation effectiveness tests. The investigational results indicate that an encapsulation thickness of 30 nm yields the maximum EL intensity, with a peak wavelength of 470 nm and an external quantum efficiency (EQE) of 8.1 %. This configuration exhibited a low turn-on voltage of 3 V. The I–V plot demonstrated a maximum current density of 8.2 mA/cm2. The Hall mobility was increased to 1.0 × 10−4 cm2/V.s with the observed carrier concentration of 2.6 × 1016 cm−3. The alumina encapsulation significantly improved the durability and stability, with a device lifetime of 312 hours, and reduced the oxygen permeation rate to 5 cm3/m2/day/atm. The findings highlight the crucial role of optimizing alumina encapsulation thickness in enhancing the functional performance of PF-based OLED devices.


Corresponding author: Murali Mohan, Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 602105, Tamil Nadu, India, e-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Corrêa Santos, D.; Vieira Marques, M. D. F. Blue Light Polymeric Emitters for the Development of OLED Devices. J. Mater. Sci.: Mater. Electron. 2022, 33, 12529–12565. https://doi.org/10.1007/s10854-022-08333-3.Search in Google Scholar

2. Chew, K. W.; Abdul Rahim, N. A.; Teh, P. L.; Osman, A. F. Enhanced Luminescence Stability and Oxidation–Reduction Potential of Polyfluorene for Organic Electronics: A Review. Polym. Bull. 2024, 81, 7659–7685. https://doi.org/10.1007/s00289-023-05096-7.Search in Google Scholar

3. Azadinia, M.; Fathollahi, M.; Barghi, T.; Zare Zardareh, S.; Akbari Boroumand, F.; Mohajerani, E. Electrical and Environmental Degradation Causes and Effects in Polyfluorene-Based Polymer Light-Emitting Diodes. J. Electron. Mater. 2020, 49 (6), 3645–3651. https://doi.org/10.1007/s11664-020-08050-9.Search in Google Scholar

4. AlSalhi, M. S.; Aljaafreh, M. J.; Osman, M. M.; Prasad, S.; Asemi, N. N. A Poly-Fluorene-Based Conjugated Copolymer for Dual-Applicable as Hole Transporter with Increased Stability of Perovskite Solar Cells. Appl. Phys. A Mater. Sci. Process. 2023, 129 (11). https://doi.org/10.1007/s00339-023-07011-3.Search in Google Scholar

5. Sardar, G.; Shukla, A.; Moore, E. G.; Banappanavar, G.; Lo, S. C.; Namdas, E. B.; Kabra, D. Reduced Singlet-Triplet Annihilation for Low Threshold Amplified Spontaneous Emission from a Blue Polyfluorene Electroluminescent Organic Semiconductor. J. Phys. Chem. C 2022, 126 (21), 9069–9075. https://doi.org/10.1021/acs.jpcc.2c00648.Search in Google Scholar

6. Gioti, M.; Tselekidou, D.; Foris, V.; Kyriazopoulos, V.; Papadopoulos, K.; Kassavetis, S.; Logothetidis, S. Influence of Dopant Concentration and Annealing on Binary and Ternary Polymer Blends for Active Materials in OLEDs. Nanomaterials 2022, 12 (22). https://doi.org/10.3390/nano12224099.Search in Google Scholar PubMed PubMed Central

7. Chang, A. C.; Messikh, M. B.; Kaiser, M.; Carter, K. R. Semiconducting Cellulose Nanocrystal-Polyfluorene Emissive Materials in Organic Light-Emitting Diodes. ACS Appl. Polym. Mater. 2021, 3 (7), 3595–3602. https://doi.org/10.1021/acsapm.1c00489.Search in Google Scholar

8. Yingying, S.; Shuai, W.; Ziye, W.; Yongqiang, W.; Yunlong, L.; Shuhong, L.; Xiaochen, D.; Wenjun, W.; Wenjun, W. Enhanced Performance of Solution Processed OLED Devices Based on PFO Induced TADF Emission Layers. J. Lumin. 2024, 266. https://doi.org/10.1016/j.jlumin.2023.120274.Search in Google Scholar

9. Yuan, C.; Eguchi, K.; Murata, H. BINOL Induces Chirality in Polyfluorene-Based Electroluminescent Polymers in Solid State. Jpn. J. Appl. Phys. 2024, 63 (2). https://doi.org/10.35848/1347-4065/ad0413.Search in Google Scholar

10. Yakimanskiy, A. A.; Kaskevich, K. I.; Zhukova, E. V.; Berezin, I. A.; Litvinova, L. S.; Chulkova, T. G.; Lypenko, D. A.; Dmitriev, A. V.; Pozin, S. I.; Nekrasova, N. V.; Tomilin, F. N.; Ivanova, D. A.; Yakimansky, A. V.; Yakimansky, A. V. Synthesis, Photo- and Electroluminescence of New Polyfluorene Copolymers Containing Dicyanostilbene and 9,10-Dicyanophenanthrene in the Main Chain. Materials 2023, 16 (16). https://doi.org/10.3390/ma16165592.Search in Google Scholar PubMed PubMed Central

11. Ghase, V. D.; Hasija, D. C.; Rananaware, M. M.; Patil, V. R. Alkyl and Allyl Substituted Polydibenzofluorene: Blue Emitters for Future Display Applications. SN Appl. Sci. 2020, 2 (7). https://doi.org/10.1007/s42452-020-2940-8.Search in Google Scholar

12. Mucur, S. P.; Canımkurbey, B.; Korkmaz, A. D. Magnetic Field Implementing into the Electroluminescence of OLED Devices Doped with CoFe2O4 Nanoparticles. Light Eng. 2020, 28 (2), 95–105. https://doi.org/10.33383/2019-021.Search in Google Scholar

13. Ayobi, A. Effects of Charge Carrier Transport and Band Structure Models on the Performance of Blue-Emitting Polyfluorene-Based Light-Emitting Diodes. J. Electron. Mater. 2022, 51 (4), 1681–1691. https://doi.org/10.1007/s11664-022-09435-8.Search in Google Scholar

14. Jain, N.; Sinha, O. P.; Pandey, S.; Singh, R. K. Transient Analysis of Poly (3,4-Ethylenedioxythiophene) Poly (Styrenesulphonate) (PEDOT: PSS)-Polyfluorene Organic Polymer Layer Light Emitting Diode. Micro Nanosyst. 2019, 12 (3), 226–231. https://doi.org/10.2174/1876402911666190820093414.Search in Google Scholar

15. Peng, F.; Zhong, W.; He, J.; Zhong, Z.; Guo, T.; Ying, L. Effect of Alkyl Side Chain Length on the Electroluminescent Performance of Blue Light-Emitting Poly(Fluorene-Co-Dibenzothiophene-S,S-Dioxide). Dyes Pigm. 2021, 187. https://doi.org/10.1016/j.dyepig.2021.109139.Search in Google Scholar

16. Dey, K.; Chowdhury, S. R.; Dykstra, E.; Koronatov, A.; Lu, H. P.; Shinar, R.; Shinar, J.; Anzenbacher, P.; Anzenbacher, P. Diazirine-Based Photo-Crosslinkers for Defect Free Fabrication of Solution Processed Organic Light-Emitting Diodes. J. Mater. Chem. C 2020, 8 (34), 11988–11996. https://doi.org/10.1039/d0tc02317e.Search in Google Scholar

17. Li, Y.; Xiong, Y.; Yang, H.; Cao, K.; Chen, R. Thin Film Encapsulation for the Organic Light-Emitting Diodes Display via Atomic Layer Deposition. J. Mater. Res. 2020, 35, 681–700. https://doi.org/10.1557/jmr.2019.331.Search in Google Scholar

18. Shin, S. U.; Ryu, S. O. Optical Transmittance Improvements of Al2O3/TiO2 Multilayer OLED Encapsulation Films Processed by Atomic Layer Deposition. J. Electron. Mater. 2021, 50 (4), 2015–2020. https://doi.org/10.1007/s11664-020-08731-5.Search in Google Scholar

19. Bezgin Carbas, B. Fluorene Based Electrochromic Conjugated Polymers: A Review. Polymer 2022, 254. https://doi.org/10.1016/j.polymer.2022.125040.Search in Google Scholar

20. Zhao, X.; Tang, X.; Zhu, H.; Ma, C.; Wang, Y.; Ye, S.; Tu, L.; Xiong, Z.; Xiong, Z. Room-Temperature Observation for Reverse Intersystem Crossing in Exciplex-Based OLEDs with Balanced Charge Injection. ACS Appl. Electron. Mater. 2021, 3 (7), 3034–3043. https://doi.org/10.1021/acsaelm.1c00259.Search in Google Scholar

21. Chen, J.; Wang, S.; Zhou, H. Investigating the Effect of the Conductivity of the Electron Transportation Layer on the Organic Light-Emitting Diodes. IOP Conf. Ser. Mater. Sci. Eng. 2020, 733; https://doi.org/10.1088/1757-899x/733/1/012031.Search in Google Scholar

22. Venkatesh, R.; Singh, P. K.; Singh, S.; Logesh, K.; Kumar, R.; Shiva Kumar, P.; Soudagar, M. E. M.; Al Obaid, S.; Salmen, S. H. Exposure of Cu on Microstructural and Functional Performance of Cadmium Telluride Solar Cell. Opt. Quant. Electron. 2025, 57, 112. https://doi.org/10.1007/s11082-024-08027-6.Search in Google Scholar

23. Venkatesh, R.; Logesh, K.; Kumar, R.; Singh, S.; Singh, P. K.; Vijay, S. N. S. M.; Kaliappan, S.; Soudagar, M. E. M.; Ifseisi, A. A. Performance Investigation of Silicon Nitride (SiNx) Layer Doped with Twin Thin Films of Gallium and Zinc Oxide for Solar Cell. Opt. Quant. Electron. 2024, 56, 1160. https://doi.org/10.1007/s11082-024-07100-4.Search in Google Scholar

24. Pidluzhna, A.; Vembris, A.; Grzibovskis, R.; Zommere, M. A.; Bezvikonnyi, O.; Simokaitiene, J.; Baronaite, M.; Volyniuk, D.; Grazulevicius, J. V.; Ali, A.; Baryshnikov, G.; Ivaniuk, K.; Starykov, H.; Stakhira, P. The Effect of Molecular Structure on the Properties of Fluorene Derivatives for OLED Applications. Molecules 2024, 29 (20), 4918. https://doi.org/10.3390/molecules29204918.Search in Google Scholar PubMed PubMed Central

25. Guo, F.; Zhang, M.; Zhao, S.; Hu, L.; Xiao, B.; Ying, L.; Yang, R. Efficient Polyfluorene Derivatives for Blue Light-Emitting Diodes Enabled by Tuning Conjugation Length of Bulky Chromophores. Dyes Pigm. Int. J. 2022, 199 (110059), 110059. https://doi.org/10.1016/j.dyepig.2021.110059.Search in Google Scholar

26. Venkatesh, R.; Agrawal, A.; Malarkodi, K.; Ramakrishnan, H.; Priya, C. B.; Alothman, A. A.; Ghosh, A. Features of Nano TiO2 on Metallographic and Optical Performance of Polyvinyl Alcohol Nanocomposite Film. Opt. Quant. Electron. 2024, 56 (5). https://doi.org/10.1007/s11082-024-06484-7.Search in Google Scholar

Received: 2025-06-13
Accepted: 2025-10-02
Published Online: 2025-11-04

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0545/html
Scroll to top button