Home Relativistic quantum theory for atomic and molecular response properties
Article
Licensed
Unlicensed Requires Authentication

Relativistic quantum theory for atomic and molecular response properties

First hundred years of quantum mechanics and more than fifty years of response properties
  • Ignacio Agustín Aucar , Juan José Aucar and Gustavo Adolfo Aucar ORCID logo EMAIL logo
Published/Copyright: October 28, 2025

Abstract

This perspective revisits key developments and challenges in the theoretical description of atomic and molecular electronic properties within the framework of relativistic quantum chemistry. Fundamental conceptual issues arising from the extension of non-relativistic theories to the relativistic domain are discussed, with particular emphasis on four-component formalisms, the treatment and interpretation of negative-energy states, including virtual excitations involving these states, the reinterpretation of operators and observables, and the introduction of weak interactions into this field of research. Special attention is given to the construction of model Hamiltonians as accurately as possible and the analysis of the electronic contributions due to spin-dependent and spin-independent effective Hamiltonians to molecular properties. In this context, the generalization of the spin-symmetry to time-reversal-restricted symmetry is emphasized. Recent methodological advances, including the application of the relativistic polarization propagator theory, are also highlighted.


Corresponding author: Gustavo Adolfo Aucar, Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), and Physics Department, Natural and Exact Sciences Faculty, National Northeastern University, Avda. Libertad 5460, W3404AAS, Corrientes, Argentina, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Award Identifier / Grant number: PICT-2021 I-A-00933

Award Identifier / Grant number: PIP 112202101 00483

Acknowledgments

We are grateful to the great efforts of leading scientists that made it possible for relativistic quantum physics to be applied to the atomic and molecular issues. GAA gives special thanks to the small, encouraging and ever visionary group of young, though not all scientists, that have met for the first time in Odense, DK, in the early 1990’s to start developing some of the, at the time very promising and exciting, areas of the relativistic quantum chemistry. We also would like to thank Professors Manuel Yañez and Russell Boyd for the invitation to write this article.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Schrödinger, E. Ann. Phys. (Berl.) 1926, 384, 361–376. https://doi.org/10.1002/andp.19263840404.Search in Google Scholar

2. Schrödinger, E. Ann. Phys. (Berl.) 1926, 385, 437–490. https://doi.org/10.1002/andp.19263851302.Search in Google Scholar

3. Dirac, P. A. M. Proc. R. Soc. Lond. A 1928, 117, 610–624. https://doi.org/10.1098/rspa.1928.0023.Search in Google Scholar

4. Swirles, B. Proc. R. Soc. Lond. A 1935, 152, 625–649. https://doi.org/10.1098/rspa.1935.0211.Search in Google Scholar

5. Dirac, P. A. M. Proc. R. Soc. Lond. A 1929, 123, 714–733. https://doi.org/10.1098/rspa.1929.0094.Search in Google Scholar

6. Norman, P.; Ruud, K.; Saue, T. Principles and Practices of Molecular Properties: Theory, Modeling, and Simulations; Wiley: Oxford, UK, 2018.10.1002/9781118794821Search in Google Scholar

7. Dyall, K. G.; Faegri, K.Jr. Introduction to Relativistic Quantum Chemistry; Oxford University Press: Oxford, UK, 2007.10.1093/oso/9780195140866.001.0001Search in Google Scholar

8. Grandy, W. T. Relativistic Quantum Mechanics of Leptons and Fields, Vol. 41; Kluwer Academic Publishers: Dordrecht, Boston, London, 1991.10.1007/978-94-011-3302-9Search in Google Scholar

9. Gell-Mann, M. Nuovo Cimento 1956, 4, 848–866. https://doi.org/10.1007/bf02748000.Search in Google Scholar

10. Goldstein, H.; Poole, C. P.; Safko, J. L. Classical Mechanics, 3rd ed.; Addison Wesley: San Francisco, 2002.10.1119/1.1484149Search in Google Scholar

11. Breit, G. Phys. Rev. 1929, 34, 553–573. https://doi.org/10.1103/physrev.34.553.Search in Google Scholar

12. Bethe, H. A.; Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms; Springer: Berlin, Heidelberg, 1957.10.1007/978-3-662-12869-5Search in Google Scholar

13. Kutzelnigg, W. Chem. Phys. 2012, 395, 16–34. https://doi.org/10.1016/j.chemphys.2011.06.001.Search in Google Scholar

14. Pyykko, P. Chem. Rev. 1988, 88, 563–594. https://doi.org/10.1021/cr00085a006.Search in Google Scholar

15. Quiney, H. M.; Skaane, H.; Grant, I. P. Adv. Quantum Chem. 1998, 32, 1–49. https://doi.org/10.1016/S0065-3276(08)60405-0.Search in Google Scholar

16. Hess, B. A.; Marian, C. M. Relativistic Electronic Structure Theory. In Relativistic Electronic Structure Theory. Part 1. Fundamentals; Schwerdtfeger, P., Ed.; Elsevier: London, 2002; pp 78–133.Search in Google Scholar

17. Pyykkö, P. Chem. Rev. 2012, 112, 371–384. https://doi.org/10.1021/cr200042e.Search in Google Scholar PubMed

18. Liu, W. Phys. Rep. 2014, 537, 59–89. https://doi.org/10.1016/j.physrep.2013.11.006.Search in Google Scholar

19. Reiher, M.; Wolf, A. Relativistic Quantum Chemistry. The Fundamental Theory of Molecular Science; Wiley-VCH: Weinheim, 2015; pp. 78–133.10.1002/9783527667550Search in Google Scholar

20. Dolg, M.; Cao, X. Chem. Rev. 2012, 112, 403–480. https://doi.org/10.1021/cr2001383.Search in Google Scholar PubMed

21. Zhou, H.; Kincaid, B.; Wang, G.; Annaberdiyev, A.; Ganesh, P.; Mitas, L. J. Chem. Phys. 2024, 160, 084302–084318. https://doi.org/10.1063/5.0180057.Search in Google Scholar PubMed

22. Kim, Y.-K. Phys. Rev. 1967, 154, 17–39. https://doi.org/10.1103/physrev.154.17.Search in Google Scholar

23. Stanton, R. E.; Havriliak, S. J. Chem. Phys. 1984, 81, 1910–1918. https://doi.org/10.1063/1.447865.Search in Google Scholar

24. Grant, I. P.; Quiney, H. M. Adv. At. Mol. Phys. 1988, 23, 37–86. https://doi.org/10.1016/S0065-2199(08)60105-0.Search in Google Scholar

25. Talman, J. D. Phys. Rev. Lett. 1986, 57, 1091–1094. https://doi.org/10.1103/physrevlett.57.1091.Search in Google Scholar

26. Lohr, L. L.Jr.; Pyykkö, P. Chem. Phys. Lett. 1979, 62, 333–338. https://doi.org/10.1016/0009-2614(79)80191-8.Search in Google Scholar

27. Aerts, P.; Nieuwpoort, W. Int. J. Quantum Chem. 1985, 28, 267–277. https://doi.org/10.1002/qua.560280826.Search in Google Scholar

28. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC25 (2025), written by T. Saue, L. Visscher, H. J. A. Jensen, R. Bast and A. S. P. Gomes, with contributions from I. A. Aucar, V. Bakken, J. Brandejs, C. Chibueze, J. Creutzberg, K. G. Dyall, et al. https://doi.org/10.5281/zenodo.14833106, see also https://www.diracprogram.org.Search in Google Scholar

29. Saue, T.; Bast, R.; Gomes, A. S. P.; Jensen, H. J. A.; Visscher, L.; Aucar, I. A.; Di Remigio, R.; Dyall, K. G.; Eliav, E.; Fasshauer, E.; Fleig, T.; Halbert, L.; Hedegård, E. D.; Helmich-Paris, B.; Iliaš, M.; Jacob, C. R.; Knecht, S.; Laerdahl, J. K.; Vidal, M. L.; Nayak, M. K.; Olejniczak, M.; Olsen, J. M. H.; Pernpointner, M.; Senjean, B.; Shee, A.; Sunaga, A.; van Stralen, J. N. P. J. Chem. Phys. 2020, 152, 204104. https://doi.org/10.1063/5.0004844.Search in Google Scholar PubMed

30. Saue, T.; Faegri, K.; Gropen, O. Chem. Phys. Lett. 1996, 263, 360–366. https://doi.org/10.1016/s0009-2614(96)01250-x.Search in Google Scholar

31. Saue, T.; Faegri, K.; Helgaker, T.; Gropen, O. Mol. Phys. 1997, 91, 937–950. https://doi.org/10.1080/002689797171058.Search in Google Scholar

32. Anderson, C. D. Phys. Rev. 1933, 43, 491–494. https://doi.org/10.1103/physrev.43.491.Search in Google Scholar

33. Aucar, I. A.; Gómez, S. S.; de Azúa, M. C. R.; Giribet, C. G. J. Chem. Phys. 2012, 136, 204119. https://doi.org/10.1063/1.4721627.Search in Google Scholar PubMed

34. Aucar, G. A.; Aucar, I. A. Annu. Rep. NMR Spectrosc.; Webb, G. A., Ed.; Academic Press: London, 2019, ch. 3; pp. 78–133.Search in Google Scholar

35. Flygare, W. H. J. Chem. Phys. 1964, 41, 793–800. https://doi.org/10.1063/1.1725962.Search in Google Scholar

36. Flygare, W. H. Chem. Rev. 1974, 74, 653–687. https://doi.org/10.1021/cr60292a003.Search in Google Scholar

37. Sternheim, M. M. Phys. Rev. 1962, 128, 676–677. https://doi.org/10.1103/physrev.128.676.Search in Google Scholar

38. Pyykkö, P. Chem. Phys. 1983, 74, 1–7. https://doi.org/10.1016/0301-0104(83)80001-9.Search in Google Scholar

39. Aucar, G.; Saue, T.; Visscher, L.; Jensen, H. J. A. J. Chem. Phys. 1999, 110, 6208–6218. https://doi.org/10.1063/1.479181.Search in Google Scholar

40. Aucar, G. A.; Oddershede, J. Int. J. Quantum Chem. 1993, 47, 425–435. https://doi.org/10.1002/qua.560470603.Search in Google Scholar

41. Aucar, G. A.; Romero, R. H.; Maldonado, A. F. Int. Rev. Phys. Chem. 2010, 29, 1–64. https://doi.org/10.1080/01442350903432865.Search in Google Scholar

42. Kutzelnigg, W. Phys. Rev. A 2003, 67, 032109–032121. https://doi.org/10.1103/physreva.67.032109.Search in Google Scholar

43. Xiao, Y.; Sun, Q.; Liu, W. Theor. Chem. Acc. 2012, 131, 1080–1097. https://doi.org/10.1007/s00214-011-1080-z.Search in Google Scholar

44. Gomez, S. S.; Maldonado, A.; Aucar, G. A. J. Chem. Phys. 2005, 123, 214108–214115. https://doi.org/10.1063/1.2133729.Search in Google Scholar PubMed

45. Bauke, H.; Ahrens, S.; Keitel, C. H.; Grobe, R. New J. Phys. 2014, 16, 04312–04321. https://doi.org/10.1088/1367-2630/16/4/043012.Search in Google Scholar

46. Bauke, H.; Ahrens, S.; Keitel, C. H.; Grobe, R. Phys. Rev. A 2014, 89, 052101–052116. https://doi.org/10.1103/physreva.89.052101.Search in Google Scholar

47. Aucar, G. A.; Jensen, H. J. A.; Oddershede, J. Chem. Phys. Lett. 1995, 232, 47–53. https://doi.org/10.1016/0009-2614(94)01332-p.Search in Google Scholar

48. Aucar, G. A. NMR Spectroscopic Parameters: Theories and Models, Computational Codes and Calculations, 1st ed.; Aucar, G. A., Ed.; Royal Society of Chemistry: London, 2025; pp. 231–261.10.1039/9781837678020-00231Search in Google Scholar

49. Jensen, H. J. J.; Dyall, K. G.; Saue, T.; Fægri, K.Jr. J. Chem. Phys. 1996, 104, 4083–4097. https://doi.org/10.1063/1.471644.Search in Google Scholar

50. Saue, T.; Jensen, H. J. A. J. Chem. Phys. 1999, 111, 6211–6222. https://doi.org/10.1063/1.479958.Search in Google Scholar

51. Fleig, T. Phys. Rev. A 2008, 77, 062503–062512. https://doi.org/10.1103/physreva.77.062503.Search in Google Scholar

52. Kutzelnigg, W. Relativistic Electronic Structure Theory. Part 1. Fundamentals; Schwerdtfeger, P., Ed.; Elsevier: London, 2002, ch. 12; pp. 78–133.Search in Google Scholar

53. Kutzelnigg, W. Int. J. Quantum Chem. 1984, 25, 107–129. https://doi.org/10.1002/qua.560250112.Search in Google Scholar

54. Dyall, K. G. J. Chem. Phys. 1994, 100, 2118–2127. https://doi.org/10.1063/1.466508.Search in Google Scholar

55. Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1996, 261, 335–345. https://doi.org/10.1016/0009-2614(96)00988-8.Search in Google Scholar

56. Kaupp, M.; Malkin, O. L.; Malkin, V. G. Chem. Phys. Lett. 1997, 265, 55–59. https://doi.org/10.1016/s0009-2614(96)01425-x.Search in Google Scholar

57. Vaara, J.; Ruud, K.; Vahtras, O.; Ågren, H.; Jokisaari, J. J. Chem. Phys. 1998, 109, 1212–1222. https://doi.org/10.1063/1.476672.Search in Google Scholar

58. Pyykkö, P. Annu. Rev. Phys. Chem. 2012, 63, 45–64. https://doi.org/10.1146/annurev-physchem-032511-143755.Search in Google Scholar PubMed

59. Liu, W. WIREs Comput. Mol. Sci. 2023, 13, e1652. https://doi.org/10.1002/wcms.1652.Search in Google Scholar

60. Aucar, G. A.; Melo, J. I.; Aucar, I. A.; Maldonado, A. F. Int. J. Quantum Chem. 2018, 118, e25487. https://doi.org/10.1002/qua.25487.Search in Google Scholar

61. Aucar, I. A.; Gomez, S. S.; Giribet, C. G.; Aucar, G. A. Phys. Chem. Chem. Phys. 2016, 18, 23572–23586. https://doi.org/10.1039/c6cp03355e.Search in Google Scholar PubMed

62. Aucar, I. A.; Gomez, S. S.; Giribet, C. G.; Aucar, G. A. J. Phys. Chem. Lett. 2016, 7, 5188–5192. https://doi.org/10.1021/acs.jpclett.6b02361.Search in Google Scholar PubMed

63. Aucar, I. A.; Gomez, S. S.; Giribet, C. G.; Ruiz de Azúa, M. C. J. Chem. Phys. 2014, 141, 194103. https://doi.org/10.1063/1.4901422.Search in Google Scholar PubMed

64. Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Chem. Rev. 2012, 112, 543–631. https://doi.org/10.1021/cr2002239.Search in Google Scholar PubMed

65. Repisky, M.; Komorovsky, S.; Kadek, M.; Konecny, L.; Ekström, U.; Malkin, E.; Kaupp, M.; Ruud, K.; Malkina, O. L.; Malkin, V. G. J. Chem. Phys. 2020, 152, 184101. https://doi.org/10.1063/5.0005094.Search in Google Scholar PubMed

66. Belpassi, L.; De Santis, M.; Quiney, H. M.; Tarantelli, F.; Storchi, L. J. Chem. Phys. 2020, 152, 164118. https://doi.org/10.1063/5.0002831.Search in Google Scholar PubMed

67. Zhang, Y.; Suo, B.; Wang, Z.; Zhang, N.; Li, Z.; Lei, Y.; Zou, W.; Gao, J.; Peng, D.; Pu, Z.; Xiao, Y.; Sun, Q.; Wang, F.; Ma, Y.; Wang, X.; Guo, Y.; Liu, W. J. Chem. Phys. 2020, 152, 064113. https://doi.org/10.1063/1.5143173.Search in Google Scholar PubMed

68. Yanai, T.; Nakano, H.; Nakajima, T.; Tsuneda, T.; Hirata, S.; Kawashima, Y.; Nakao, Y.; Kamiya, M.; Sekino, H.; Hirao, K. Computational Science – ICCS 2003: Berlin, Heidelberg, 2003; pp. 84–95.10.1007/3-540-44864-0_9Search in Google Scholar

69. Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A.; Booth, G. H.; Chen, J.; Cui, Z.-H.; Eriksen, J. J.; Gao, Y.; Guo, S.; Hermann, J.; Hermes, M. R.; Koh, K.; Koval, P.; Lehtola, S.; Li, Z.; Liu, J.; Mardirossian, N.; McClain, J. D.; Motta, M.; Mussard, B.; Pham, H. Q.; Pulkin, A.; Purwanto, W.; Robinson, P. J.; Ronca, E.; Sayfutyarova, E. R.; Scheurer, M.; Schurkus, H. F.; Smith, J. E. T.; Sun, C.; Sun, S.-N.; Upadhyay, S.; Wagner, L. K.; Wang, X.; White, A.; Whitfield, J. D.; Williamson, M. J.; Wouters, S.; Yang, J.; Yu, J. M.; Zhu, T.; Berkelbach, T. C.; Sharma, S.; Sokolov, A. Y.; Chan, G. K.-L J. Chem. Phys. 2020, 153, 024109. https://doi.org/10.1063/5.0006074.Search in Google Scholar PubMed

70. Williams-Young, D. B.; Petrone, A.; Sun, S.; Stetina, T. F.; Lestrange, P.; Hoyer, C. E.; Nascimento, D. R.; Koulias, L.; Wildman, A.; Kasper, J.; Goings, J. J.; Ding, F.; DePrince, A. E.III; Valeev, E. F.; Li, X. WIREs Comput. Mol. Sci. 2020, 10, e1436. https://doi.org/10.1002/wcms.1436.Search in Google Scholar

71. Dyall, K. G. J. Chem. Phys. 1997, 106, 9618–9626. https://doi.org/10.1063/1.473860.Search in Google Scholar

72. Kutzelnigg, W.; Liu, W. Mol. Phys. 2006, 104, 2225–2240. https://doi.org/10.1080/00268970600662481.Search in Google Scholar

73. Liu, W.; Kutzelnigg, W. J. Chem. Phys. 2007, 126, 114107. https://doi.org/10.1063/1.2710258.Search in Google Scholar PubMed

74. Liu, W.; Peng, D. J. Chem. Phys. 2009, 131, 031104. https://doi.org/10.1063/1.3159445.Search in Google Scholar

75. Reiher, M.; Wolf, A. J. Chem. Phys. 2004, 121, 10945–10956. https://doi.org/10.1063/1.1818681.Search in Google Scholar

76. Douglas, M.; Kroll, N. M. Ann. Phys. 1974, 82, 89–155. https://doi.org/10.1016/0003-4916(74)90333-9.Search in Google Scholar

77. Hess, B. A. Phys. Rev. A 1985, 32, 756. https://doi.org/10.1103/physreva.32.756.Search in Google Scholar

78. Hess, B. A. Phys. Rev. A 1986, 33, 3742. https://doi.org/10.1103/physreva.33.3742.Search in Google Scholar

79. Barysz, M.; Sadlej, A. J.; Snijders, J. G. Int. J. Quantum Chem. 1997, 65, 225–239. https://doi.org/10.1002/(sici)1097-461x(1997)65:3<225::aid-qua4>3.0.co;2-y.10.1002/(SICI)1097-461X(1997)65:3<225::AID-QUA4>3.0.CO;2-YSearch in Google Scholar

80. Foldy, L. L.; Wouthuysen, S. A. Phys. Rev. 1950, 78, 29. https://doi.org/10.1103/physrev.78.29.Search in Google Scholar

81. Iliaš, M.; Jensen, H. J. A.; Kellö, V.; Roos, B. O.; Urban, M. Chem. Phys. Lett. 2005, 408, 210–215. https://doi.org/10.1016/j.cplett.2005.04.027.Search in Google Scholar

82. Chang, C.; Pelissier, M.; Durand, P. Phys. Scr. 1986, 34, 394. https://doi.org/10.1088/0031-8949/34/5/007.Search in Google Scholar

83. van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783–9792. https://doi.org/10.1063/1.467943.Search in Google Scholar

84. Filatov, M.; Cremer, D. J. Chem. Phys. 2005, 122, 064104. https://doi.org/10.1063/1.1844298.Search in Google Scholar PubMed

85. Zou, W.; Filatov, M.; Cremer, D. Theor. Chem. Acc. 2011, 130, 633–644. https://doi.org/10.1007/s00214-011-1007-8.Search in Google Scholar

86. Filatov, M.; Zou, W.; Cremer, D. J. Chem. Phys. 2013, 139, 014106. https://doi.org/10.1063/1.4811776.Search in Google Scholar PubMed

87. Cremer, D.; Zou, W.; Filatov, M. WIREs Comput. Mol. Sci. 2014, 4, 436–467. https://doi.org/10.1002/wcms.1181.Search in Google Scholar

88. Cheng, L.; Gauss, J. J. Chem. Phys. 2011, 135, 084114. https://doi.org/10.1063/1.3624397.Search in Google Scholar PubMed

89. Cheng, L.; Gauss, J. J. Chem. Phys. 2011, 135, 244104. https://doi.org/10.1063/1.3667202.Search in Google Scholar PubMed

90. Cheng, L.; Gauss, J.; Stanton, J. F. J. Chem. Phys. 2013, 139, 054105. https://doi.org/10.1063/1.4816130.Search in Google Scholar PubMed

91. Knecht, S.; Repisky, M.; Jensen, H. J. A.; Saue, T. J. Chem. Phys. 2022, 157, 114106. https://doi.org/10.1063/5.0095112.Search in Google Scholar PubMed

92. Autschbach, J.; Peng, D.; Reiher, M. J. Chem. Theory Comput. 2012, 8, 4239–4248. https://doi.org/10.1021/ct300623j.Search in Google Scholar PubMed

93. Melo, J. I.; Ruiz de Azua, M. C.; Giribet, C. G.; Aucar, G. A.; Romero, R. H. J. Chem. Phys. 2003, 118, 471–486. https://doi.org/10.1063/1.1525808.Search in Google Scholar

94. Aucar, I. A.; Colombo Jofré, M. T.; Aucar, G. A. J. Chem. Phys. 2023, 158, 094306; https://doi.org/10.1063/5.0141176.Search in Google Scholar PubMed

95. Melo, J. I.; Maldonado, A. F. Int. J. Quantum Chem. 2019, 119, e25935. https://doi.org/10.1002/qua.25935.Search in Google Scholar

96. Bajac, D. F. E.; Aucar, I. A.; Aucar, G. A. Phys. Rev. A 2021, 104, 012805. https://doi.org/10.1103/physreva.104.012805.Search in Google Scholar

97. Aucar, J. J.; Maldonado, A. F.; Melo, J. I. J. Chem. Phys. 2025, 162, 194103. https://doi.org/10.1063/5.0264596.Search in Google Scholar PubMed

98. Ruiz De Azua, M. C.; Giribet, C. G.; Melo, J. I. J. Chem. Phys. 2011, 134, 034123. https://doi.org/10.1063/1.3528717.Search in Google Scholar PubMed

99. Fukui, H.; Baba, T.; Inomata, H. J. Chem. Phys. 1996, 105, 3175–3186. https://doi.org/10.1063/1.472165.Search in Google Scholar

100. Manninen, P.; Lantto, P.; Vaara, J.; Ruud, K. J. Chem. Phys. 2003, 119, 2623–2637. https://doi.org/10.1063/1.1586912.Search in Google Scholar

101. Lantto, P.; Vaara, J. J. Chem. Phys. 2007, 127, 084312. https://doi.org/10.1063/1.2759205.Search in Google Scholar PubMed

102. Aucar, I. A. Ph.D. Thesis; National Northeastearn University, 2015. https://repositorio.unne.edu.ar/handle/123456789/452.Search in Google Scholar

103. Lantto, P.; Standara, S.; Riedel, S.; Vaara, J.; Straka, M. Phys. Chem. Chem. Phys. 2012, 14, 10944. https://doi.org/10.1039/c2cp41240c.Search in Google Scholar PubMed

104. Aucar, J. J.; Maldonado, A. F.; Melo, J. I. J. Chem. Phys. 2022, 157, 244105. https://doi.org/10.1063/5.0124701.Search in Google Scholar PubMed

105. Aucar, J. J.; Melo, J. I.; Maldonado, A. F. J. Phys. Chem. A 2024, 128, 5089–5099. https://doi.org/10.1021/acs.jpca.4c00426.Search in Google Scholar PubMed

106. Pyykkö, P.; Seth, M. Theor. Chem. Acc. 1997, 96, 92–104. https://doi.org/10.1007/s002140050209.Search in Google Scholar

107. Stopkowicz, S.; Gauss, J. J. Chem. Phys. 2011, 134, 204106. https://doi.org/10.1063/1.3587633.Search in Google Scholar PubMed

108. Sakurai, J. J. Modern Quantum Mechanics; Addison-Wesley: New York, USA, 1994.Search in Google Scholar

109. Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, 1965.Search in Google Scholar

110. Huang, K. Quantum Field Theory: From Operators to Path Integrals; WILEY-VCH: New York, 2010.Search in Google Scholar

111. Zubarev, D. N. Usp. Fiz. Nauk 1960, 71, 71 [Sov. Phys. Usp. 3, 320 (1960), English translation by D. ter Haar]. https://doi.org/10.3367/ufnr.0071.196005c.0071.Search in Google Scholar

112. Oddershede, J.; Jørgensen, P.; Yeager, D. L. Comput. Phys. Rep. 1984, 2, 33–92. https://doi.org/10.1016/0167-7977(84)90003-0.Search in Google Scholar

113. Aucar, G. A.; Maldonado, A. F. Comprehensive Computational Chemistry, 1st ed.; Boyd, R. J.; Yáñez, M., Eds.; Elsevier: Oxford, 2024, ch. 7; pp. 175–199.10.1016/B978-0-12-821978-2.00122-7Search in Google Scholar

114. Aucar, G. A. Phys. Chem. Chem. Phys. 2014, 16, 4420–4438. https://doi.org/10.1039/c3cp52685b.Search in Google Scholar PubMed

115. Safronova, M. S.; Budker, D.; DeMille, D.; Kimball, D. F. J.; Derevianko, A.; Clark, C. W. Rev. Mod. Phys. 2018, 90, 3–40. https://doi.org/10.1103/RevModPhys.90.025008.Search in Google Scholar

116. Lee, T. D.; Yang, C. N. Phys. Rev. 1956, 104, 254–258. https://doi.org/10.1103/physrev.104.254.Search in Google Scholar

117. Wu, C. S.; Ambler, E.; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P. Phys. Rev. 1957, 105, 1413–1415. https://doi.org/10.1103/physrev.105.1413.Search in Google Scholar

118. Khriplovich, I. B. Parity Nonconservation in Atomic Phenomena; Gordon and Breach Science Publishers: Philadelphia, PA, United States, 1991.Search in Google Scholar

119. Ginges, J. S. M.; Flambaum, V. V. Phys. Rep. 2004, 397, 63–154. https://doi.org/10.1016/j.physrep.2004.03.005.Search in Google Scholar

120. Bradley, L. C.; Wall, N. S. Nuovo Cim. 1962, 25, 48–54. https://doi.org/10.1007/bf02733315.Search in Google Scholar

121. Carhart, R. A. Phys. Rev. 1963, 132, 2337–2345. https://doi.org/10.1103/physrev.132.2337.Search in Google Scholar

122. Labzovsky, L. N. Zh. Eksp. Teor. Fiz. 1977, 73, 1623 [Sov. Phys. JETP 46, 853 (1977), English translation by E. Brunner].Search in Google Scholar

123. Bouchiat, M. A.; Bouchiat, C. J. Phys. France 1974, 35, 899–927. https://doi.org/10.1051/jphys:019740035012089900.10.1051/jphys:019740035012089900Search in Google Scholar

124. Laerdahl, J. K.; Schwerdtfeger, P. Phys. Rev. A 1999, 60, 4439–4453. https://doi.org/10.1103/physreva.60.4439.Search in Google Scholar

125. Kompanets, O.; Kukudzhanov, A.; Letokhov, V.; Gervits, L. Opt. Commun. 1976, 19, 414–416. https://doi.org/10.1016/0030-4018(76)90111-5.Search in Google Scholar

126. Arimondo, E.; Glorieux, P.; Oka, T. Opt. Commun. 1977, 23, 369–372. https://doi.org/10.1016/0030-4018(77)90384-4.Search in Google Scholar

127. Daussy, C.; Marrel, T.; Amy-Klein, A.; Nguyen, C. T.; Bordé, C. J.; Chardonnet, C. Phys. Rev. Lett. 1999, 83, 1554–1557. https://doi.org/10.1103/physrevlett.83.1554.Search in Google Scholar

128. Ziskind, M.; Daussy, C.; Marrel, T.; Chardonnet, C. Eur. Phys. J. D 2002, 20, 219–225. https://doi.org/10.1140/epjd/e2002-00133-0.Search in Google Scholar

129. DeMille, D.; Cahn, S. B.; Murphree, D.; Rahmlow, D. A.; Kozlov, M. G. Phys. Rev. Lett. 2008, 100, 023003. https://doi.org/10.1103/physrevlett.100.023003.Search in Google Scholar

130. Altuntaş, E.; Ammon, J.; Cahn, S. B.; DeMille, D. Phys. Rev. Lett. 2018, 120, 142501. https://doi.org/10.1103/physrevlett.120.142501.Search in Google Scholar

131. Fiechter, M. R.; Haase, P. A.; Saleh, N.; Soulard, P.; Tremblay, B.; Havenith, R. W.; Timmermans, R. G.; Schwerdtfeger, P.; Crassous, J.; Darquié, B.; Pašteka, L. F.; Borschevsky, A. J. Phys. Chem. Lett. 2022, 13, 10011–10017. https://doi.org/10.1021/acs.jpclett.2c02434.Search in Google Scholar PubMed PubMed Central

132. Berger, R.; Stohner, J. WIREs Comput. Mol. Sci. 2019, 9, e1396. https://doi.org/10.1002/wcms.1396.Search in Google Scholar

133. Titov, A.; Mosyagin, N.; Petrov, A.; Isaev, T.; DeMille, D. Recent Advances in the Theory of Chemical and Physical Systems; Springer Netherlands: Dordrecht, The Netherlands, 2006; pp 253–283.10.1007/1-4020-4528-X_12Search in Google Scholar

134. Isaev, T. A.; Hoekstra, S.; Berger, R. Phys. Rev. A 2010, 82, 052521. https://doi.org/10.1103/physreva.82.052521.Search in Google Scholar

135. Barron, L. D. Isr. J. Chem. 2021, 61, 517–529. https://doi.org/10.1002/ijch.202100044.Search in Google Scholar

136. Quack, M.; Seyfang, G.; Wichmann, G. Chem. Sci. 2022, 13, 10598–10643. https://doi.org/10.1039/d2sc01323a.Search in Google Scholar PubMed PubMed Central

137. Zabrodsky, H.; Avnir, D. J. Am. Chem. Soc. 1995, 117, 462–473. https://doi.org/10.1021/ja00106a053.Search in Google Scholar

138. Mislow, K. Molecular Chirality; John Wiley & Sons, Ltd: Chichester, UK, Vol. 73, 2007; pp 1–82.Search in Google Scholar

139. Wang, H.; Avnir, D.; Tuvi-Arad, I. Biochem. 2018, 57, 6395–6403. https://doi.org/10.1021/acs.biochem.8b00974.Search in Google Scholar PubMed

140. Grimme, S. Chem. Phys. Lett. 1998, 297, 15–22. https://doi.org/10.1016/s0009-2614(98)01101-4.Search in Google Scholar

141. Bellarosa, L.; Zerbetto, F. J. Am. Chem. Soc. 2003, 125, 1975–1979. https://doi.org/10.1021/ja028646+.10.1021/ja028646+Search in Google Scholar PubMed

142. Aucar, J. J.; Stroppa, A.; Aucar, G. A. J. Phys. Chem. Lett. 2023, 15, 234–240. https://doi.org/10.1021/acs.jpclett.3c03038.Search in Google Scholar PubMed

143. Hegstrom, R. A. Theochem (J. Mol. Struct.) 1991, 232, 17–21. https://doi.org/10.1016/0166-1280(91)85241-x.Search in Google Scholar

144. Senami, M.; Shimizu, T. Phys. Lett. A 2020, 384, 126796. https://doi.org/10.1016/j.physleta.2020.126796.Search in Google Scholar

145. Novikov, V.; Khriplovich, I. Pis’ma Zh. Eksp. Teor. Fiz. 1975, 22, 162 [JETP Lett. 22, 74 (1975), English translation by W. H. Furry].Search in Google Scholar

146. Flambaum, V.; Khriplovich, I. Zh. Eksp. Teor. Fiz. 1980, 79, 1656 [Sov. Phys. JETP 52, 835 (1980), English translation by J. G. Adashko].Search in Google Scholar

147. Blundell, S.; Sapirstein, J.; Johnson, W. Phys. Rev. D 1992, 45, 1602–1623. https://doi.org/10.1103/physrevd.45.1602.Search in Google Scholar PubMed

148. Hendrickson, K. R. G. Ph.D. Thesis, University of Washington, 1999. http://hdl.handle.net/1773/9668.Search in Google Scholar

149. Khriplovich, I. B. Parity Nonconservation in Atomic Phenomena; CRC Press: Boca Raton, FL, USA,1991.Search in Google Scholar

150. Novikov, V.; Sushkov, O.; Flambaum, V.; Khriplovich, I. Zh. Eksp. Teor. Fiz. 1977, 73, 802 [Sov. Phys. JETP 46, 420 (1977), English translation by W. H. Furry].Search in Google Scholar

151. Flambaum, V.; Khriplovich, I. Zh. Eksp. Teor. Fiz. 1985, 89, 1505 [Sov. Phys. JETP 62, 872 (1985), English translation by A. Brown].Search in Google Scholar

152. Zel’dovich, Y. B. Zh. Eksp. Teor. Fiz. 1957, 33, 1531 [Sov. Phys. JETP 6, 1184 (1957), English translation by G. E. Brown].Search in Google Scholar

153. Flambaum, V. V.; Khriplovich, I. B.; Sushkov, O. P. Phys. Lett. B 1984, 146, 367–369. https://doi.org/10.1016/0370-2693(84)90140-0.Search in Google Scholar

154. Flambaum, V. V.; Khriplovich, I. Phys. Lett. A 1985, 110, 121–125. https://doi.org/10.1016/0375-9601(85)90756-x.Search in Google Scholar

155. Tiesinga, E.; Mohr, P. J.; Newell, D. B.; Taylor, B. N. Rev. Mod. Phys. 2021, 93, 025010. https://doi.org/10.1103/revmodphys.93.025010.Search in Google Scholar

156. Gaul, K.; Marquardt, S.; Isaev, T.; Berger, R. Phys. Rev. A 2019, 99, 032509. https://doi.org/10.1103/physreva.99.032509.Search in Google Scholar

157. Zel’dovich, Y. B.; Saakyan, D.; Sobel’man, I. Pis’ma Zh. Eksp. Teor. Fiz. 1977, 25, 106 [JETP Lett. 25, 94 (1977)].Search in Google Scholar

158. Hegstrom, R.; Rein, D.; Sandars, P. J. Chem. Phys. 1980, 73, 2329–2341. https://doi.org/10.1063/1.440383.Search in Google Scholar

159. Bast, R.; Koers, A.; Gomes, A. S. P.; Iliaš, M.; Visscher, L.; Schwerdtfeger, P.; Saue, T. Phys. Chem. Chem. Phys. 2011, 13, 864–876. https://doi.org/10.1039/c0cp01483d.Search in Google Scholar

160. Forgeron, M. A. M.; Wasylishen, R. E.; Penner, G. H. J. Phys. Chem. A 2004, 108, 4751–4758. https://doi.org/10.1021/jp031279j.Search in Google Scholar

161. Gómez, S. S.; Aucar, G. A. J. Chem. Phys. 2011, 134, 204314. https://doi.org/10.1063/1.3587051.Search in Google Scholar

162. Boeckh, R. v.; Gräff, G.; Ley, R. Z. Phys. 1964, 179, 285–313. https://doi.org/10.1007/BF01381648.Search in Google Scholar

163. Brown, J. M.; Carrington, A. Rotational Spectroscopy of Diatomic Molecules; Cambridge University Press: Cambridge, UK, 2003.10.1017/CBO9780511814808Search in Google Scholar

164. Visscher, L.; Enevoldsen, T.; Saue, T.; Jensen, H. J. A.; Oddershede, J. J. Comput. Chem. 1999, 20, 1262–1273. https://doi.org/10.1002/(sici)1096-987x(199909)20:12<1262::aid-jcc6>3.3.co;2-8.10.1002/(SICI)1096-987X(199909)20:12<1262::AID-JCC6>3.3.CO;2-8Search in Google Scholar

165. Jackson, J. D. Classical Electrodynamics, 3rd ed.; Wiley: New York, 1998.10.1119/1.19136Search in Google Scholar

166. Jørgensen, P.; Simons, J. Second-Quantization-Based Methods in Quantum Chemistry; Academic Press: New York, 1981.10.1016/B978-0-12-390220-7.50005-2Search in Google Scholar

167. Saue, T.; Jensen, H. J. A. J. Chem. Phys. 2003, 118, 522–536. https://doi.org/10.1063/1.1522407.Search in Google Scholar

168. Iliaš, M.; Jensen, H. J. A.; Bast, R.; Saue, T. Mol. Phys. 2013, 111, 1373–1381. https://doi.org/10.1080/00268976.2013.798436.Search in Google Scholar

169. Quiney, H.; Skaane, H.; Grant, I. Chem. Phys. Lett. 1998, 290, 473–480. https://doi.org/10.1016/s0009-2614(98)00568-5.Search in Google Scholar

170. Aucar, I. A.; Gómez, S. S.; Melo, J. I.; Giribet, C. C.; Ruiz de Azúa, M. C. J. Chem. Phys. 2013, 138, 134107. https://doi.org/10.1063/1.4796461.Search in Google Scholar PubMed

171. Aucar, I. A.; Gómez, S. S.; Giribet, C. G.; Ruiz de Azúa, M. C. J. Chem. Phys. 2013, 139, 094112. https://doi.org/10.1063/1.4819958.Search in Google Scholar PubMed

172. Xiao, Y.; Liu, W. J. Chem. Phys. 2013, 138, 134104. https://doi.org/10.1063/1.4797496.Search in Google Scholar PubMed

173. Malkin, E.; Komorovsky, S.; Repisky, M.; Demissie, T. B.; Ruud, K. J. Phys. Chem. Lett. 2013, 4, 459–463. https://doi.org/10.1021/jz302146m.Search in Google Scholar PubMed

174. Laubender, G.; Berger, R. ChemPhysChem 2003, 4, 395–399. https://doi.org/10.1002/cphc.200390070.Search in Google Scholar PubMed

175. Bast, R.; Schwerdtfeger, P.; Saue, T. J. Chem. Phys. 2006, 125, 064504. https://doi.org/10.1063/1.2218333.Search in Google Scholar PubMed

176. Aucar, I. A.; Chamorro, Y.; Borschevsky, A. Phys. Rev. A 2022, 106, 062802. https://doi.org/10.1103/physreva.106.062802.Search in Google Scholar

177. Letokhov, V. S. Phys. Lett. A 1975, 53, 275–276. https://doi.org/10.1016/0375-9601(75)90064-x.Search in Google Scholar

178. Gorshkov, V. G.; Kozlov, M. G.; Labzovskii, L. N. Zh. Eksp. Teor. Fiz. 1982, 82, 1807 [Sov. Phys. JETP 55, 1042 (1982), English translation by J. G. Adashko].Search in Google Scholar

179. Barra, A. L.; Robert, J. B.; Wiesenfeld, L. Phys. Lett. A 1986, 115, 443–447. https://doi.org/10.1016/0375-9601(86)90072-1.Search in Google Scholar

180. Barra, A. L.; Robert, J. B.; Wiesenfeld, L. Europhys. Lett. 1988, 5, 217–222. https://doi.org/10.1209/0295-5075/5/3/006.Search in Google Scholar

181. Barra, A. L.; Robert, J. B. Mol. Phys. 1996, 88, 875–886. https://doi.org/10.1080/00268979609484479.Search in Google Scholar

182. Soncini, A.; Faglioni, F.; Lazzeretti, P. Phys. Rev. A 2003, 68, 033402. https://doi.org/10.1103/physreva.68.033402.Search in Google Scholar

183. Schwerdtfeger, P.; Bast, R. J. Am. Chem. Soc. 2004, 126, 1652–1653. https://doi.org/10.1021/ja038383z.Search in Google Scholar PubMed

184. Berger, R. Relativistic Electronic Structure Theory of Theoretical and Computational Chemistry; Schwerdtfeger, P., Ed.; Elsevier: Amsterdam, The Netherlands, Vol. 14, 2004; pp 188–288.10.1016/S1380-7323(04)80031-1Search in Google Scholar

185. Weijo, V.; Manninen, P.; Vaara, J. J. Chem. Phys. 2005, 123, 054501. https://doi.org/10.1063/1.1961321.Search in Google Scholar PubMed

186. Laubender, G.; Berger, R. Phys. Rev. A 2006, 74, 032105. https://doi.org/10.1103/physreva.74.032105.Search in Google Scholar

187. Weijo, V.; Bast, R.; Manninen, P.; Saue, T.; Vaara, J. J. Chem. Phys. 2007, 126, 074107. https://doi.org/10.1063/1.2436886.Search in Google Scholar PubMed

188. Nahrwold, S.; Berger, R. J. Chem. Phys. 2009, 130, 214101. https://doi.org/10.1063/1.3103643.Search in Google Scholar PubMed

189. Darquié, B.; Stoeffler, C.; Shelkovnikov, A.; Daussy, C.; Amy-Klein, A.; Chardonnet, C.; Zrig, S.; Guy, L.; Crassous, J.; Soulard, P.; Asselin, P.; Huet, T. R.; Schwerdtfeger, P.; Bast, R.; Saue, T. Chirality 2010, 22, 870–884. https://doi.org/10.1002/chir.20911.Search in Google Scholar PubMed

190. Hobi, F.; Berger, R.; Stohner, J. Mol. Phys. 2013, 111, 2345–2362. https://doi.org/10.1080/00268976.2013.816444.Search in Google Scholar

191. Eills, J.; Blanchard, J. W.; Bougas, L.; Kozlov, M. G.; Pines, A.; Budker, D. Phys. Rev. A 2017, 96, 042119. https://doi.org/10.1103/physreva.96.042119.Search in Google Scholar

192. Cournol, A.; Manceau, M.; Pierens, M.; Lecordier, L.; Tran, D. B. A.; Santagata, R.; Argence, B.; Goncharov, A.; Lopez, O.; Abgrall, M.; Le Coq, Y.; Le Targat, R.; Alvarez Martinez, H.; Lee, W. K.; Xu, D.; Pottie, P. E.; Hendricks, R. J.; Wall, T. E.; Bieniewska, J. M.; Sauer, B. E.; Tarbutt, M. R.; Amy-Klein, A.; Tokunaga, S. K.; Darquié, B. Quantum Electron. 2019, 49, 288–292. https://doi.org/10.1070/qel16880.Search in Google Scholar

193. Aucar, I. A.; Borschevsky, A. J. Chem. Phys. 2021, 155, 134307. https://doi.org/10.1063/5.0065487.Search in Google Scholar PubMed

194. Blanchard, J. W.; Budker, D.; DeMille, D.; Kozlov, M. G.; Skripnikov, L. V. Phys. Rev. Res. 2023, 5, 013191. https://doi.org/10.1103/physrevresearch.5.013191.Search in Google Scholar

Received: 2025-04-30
Accepted: 2025-09-26
Published Online: 2025-10-28

© 2025 IUPAC & De Gruyter

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0501/pdf
Scroll to top button