Home Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads
Article
Licensed
Unlicensed Requires Authentication

Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads

  • Zhanjun Li ORCID logo , Andrey A. Sukhanov , Takuma Ito , Greta Sambucari , Xi Chen ORCID logo , Laura Bussotti , Jianzhang Zhao ORCID logo EMAIL logo , Violeta K. Voronkova ORCID logo EMAIL logo , Mariangela Di Donato ORCID logo EMAIL logo and Yuki Kurashige EMAIL logo
Published/Copyright: July 9, 2025

Abstract

4-Amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was linked to perylene-3,4:9,10-bis(dicarboximide) (PBI) at varying distances and orientations. PBI-TEMPO dyads with the radical linked at the bay-position show a charge transfer absorption band in the UV−vis absorption spectra. With increasing solvent polarity, a fluorescence quenching is observed for these dyads, whereas for a derivative with TEMPO attached at the imide-position, such polarity dependency for fluorescence spectra was not observed. Steady state and femtosecond/nanosecond time-resolved optical spectroscopy confirmed the occurrence of radical-enhanced intersystem crossing (REISC. kISC = (23 ps)−1 − (0.5 ns)−1). The lifetime of the 3*PBI state (τT = 1.0–7.6 μs) depends on the distance and orientations between TEMPO and PBI units. The results indicate that stronger electron spin–spin dipolar interaction (vdd) between the radical and the chromophore improve REISC efficiency. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates different electron exchange interactions (JTR) in the dyads, varying from ferromagnetic interaction corresponding to strong exchange regime to weak antiferromagnetic exchange interaction with increasing the distance between PBI and TEMPO units. Transient-nutation experiments further clarify the TREPR signals. DFT calculations indicate that changes in the dyad structure alter the exchange coupling from ferromagnetic (JTR = 0.47 cm−1) to antiferromagnetic (JTR = −0.03 cm−1 and −0.01 cm−1).


Corresponding authors: Jianzhang Zhao, State Key Laboratory of Fine Chemicals, Frontier Science Center of Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, P.R. China, e-mail: ; Violeta K. Voronkova, Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia, e-mail: ; Mariangela Di Donato, LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Firenze, Italy; and ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy, e-mail: ; and Yuki Kurashige, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan, e-mail:
Zhanjun Li, Andrey A. Sukhanov and Takuma Ito contributed equally to this work. Article note: A collection of invited papers based on presentations at the International Conference on Physical Organic Chemistry held on 18-22 August 2024 in Beijing, China.

Award Identifier / Grant number: 22473021 and U2001222

Award Identifier / Grant number: DUT22LAB610

Award Identifier / Grant number: No. 2023YFE0197600

Funding source: Research and Innovation Team Project of Dalian University of Technology

Award Identifier / Grant number: DUT2022TB10

Acknowledgments

J.Z. thanks the NSFC (22473021 and U2001222), the National Key Research and Development Program of China (the Ministry of Science and Technology, No. 2023YFE0197600), the Research and Innovation Team Project of Dalian University of Technology (DUT2022TB10), the Fundamental Research Funds for the Central Universities (DUT22LAB610) and the State Key Laboratory of Fine Chemicals for financial support. A.A.S. and V.K.V. acknowledge financial support from the government assignment for FRC Kazan Scientific Centre of RAS. M.D.D. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement NO. 871124 Laser lab-Europe for the support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: J.Z. thanks the NSFC (22473021 and U2001222), the National Key Research and Development Program of China (the Ministry of Science and Technology, No. 2023YFE0197600), the Research and Innovation Team Project of Dalian University of Technology (DUT2022TB10), the Fundamental Research Funds for the Central Universities (DUT22LAB610) and the State Key Laboratory of Fine Chemicals for financial support. A.A.S. and V.K.V. acknowledge financial support from the government assignment for FRC Kazan Scientific Centre of RAS. M.D.D. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement NO. 871124 Laser lab-Europe for the support.

  7. Data availability: The data that support the findings of this study are available in the Supporting Information of this article.

References

1. Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. https://doi.org/10.1039/C2CS35203F.Search in Google Scholar

2. Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828. https://doi.org/10.1002/anie.201200223.Search in Google Scholar

3. Hari, D. P.; König, B. Chem. Comm. 2014, 50, 6688. https://doi.org/10.1039/C4CC00751D.Search in Google Scholar

4. Lyu, X.; Huang, S.; Song, H.; Liu, Y.; Wang, Q. RSC Adv. 2019, 9, 36213. https://doi.org/10.1039/C9RA06596B.Search in Google Scholar

5. Barzanò, G.; Mao, R.; Garreau, M.; Waser, J.; Hu, X. Org. Lett. 2020, 22, 5412. https://doi.org/10.1021/acs.orglett.0c01769.Search in Google Scholar

6. You, Y.; Jeong, D. Y. Synlett 2022, 33, 1142. https://doi.org/10.1055/a-1608-5633.Search in Google Scholar

7. Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77. https://doi.org/10.1039/C2CS35216H.Search in Google Scholar

8. Wang, Y.; Huang, X.; Tang, Y.; Zou, J.; Wang, P.; Zhang, Y.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 8103. https://doi.org/10.1039/C8SC03386B.Search in Google Scholar

9. Zou, J.; Wang, P.; Wang, Y.; Liu, G.; Zhang, Y.; Zhang, Q.; Shao, J.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2019, 10, 268. https://doi.org/10.1039/C8SC02443J.Search in Google Scholar

10. Wu, S.; Li, A.; Zhao, X.; Zhang, C.; Yu, B.; Zhao, N.; Xu, F. ACS Appl. Mater. Interfaces 2019, 11, 17177. https://doi.org/10.1021/acsami.9b01149.Search in Google Scholar

11. Singh-Rachford, T. N.; Castellano, F. N. Coord. Chem. Rev. 2010, 254, 2560. https://doi.org/10.1016/j.ccr.2010.01.003.Search in Google Scholar

12. Häring, M.; Pérez-Ruiz, R.; Jacobi von Wangelin, A.; Díaz, D. D. Chem. Comm. 2015, 51, 16848. https://doi.org/10.1039/C5CC06917C.Search in Google Scholar

13. Schad, C.; Avellanal-Zaballa, E.; Rebollar, E.; Ray, C.; Duque-Redondo, E.; Moreno, F.; Maroto, B. L.; Bañuelos, J.; García-Moreno, I.; De la Moya, S. Phys. Chem. Chem. Phys. 2022, 24, 27441. https://doi.org/10.1039/D2CP04006A.Search in Google Scholar

14. Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323. https://doi.org/10.1039/C3CS35531D.Search in Google Scholar

15. Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904. https://doi.org/10.1039/C5CS00364D.Search in Google Scholar

16. Lee, J. M.; Park, J.; Yoon, J. H.; Kim, J.; Kim, J. P. ChemPhotoChem 2023, 7, e202200326. https://doi.org/10.1002/cptc.202200326.Search in Google Scholar

17. Wei, Y.; Zhou, M.; Zhou, Q.; Zhou, X.; Liu, S.; Zhang, S.; Zhang, B. Phys. Chem. Chem. Phys. 2017, 19, 22049. https://doi.org/10.1039/C7CP03840B.Search in Google Scholar

18. Li, Y.; Wei, Y.; Zhou, X. J. Photochem. Photobiol. A 2020, 400, 112713. https://doi.org/10.1016/j.jphotochem.2020.112713.Search in Google Scholar

19. Yanai, N.; Kozue, M.; Amemori, S.; Kabe, R.; Adachi, C.; Kimizuka, N. J. Mater. Chem. C 2016, 4, 6447. https://doi.org/10.1039/C6TC01816E.Search in Google Scholar

20. Singh-Rachford, T. N.; Castellano, F. N. J. Phys. Chem. A 2009, 113, 5912. https://doi.org/10.1021/jp9021163.Search in Google Scholar

21. Hou, Y.; Liu, Q.; Zhao, J. Chem. Comm. 2020, 56, 1721. https://doi.org/10.1039/C9CC09058D.Search in Google Scholar

22. Wang, Z.; Toffoletti, A.; Hou, Y.; Zhao, J.; Barbon, A.; Dick, B. Chem. Sci. 2021, 12, 2829. https://doi.org/10.1039/D0SC05494A.Search in Google Scholar

23. Xiao, X.; Zhao, X.; Chen, X.; Zhao, J. Molecules 2023, 28, 2170. https://doi.org/10.3390/molecules28052170.Search in Google Scholar

24. Xiao, X.; Ye, K.; Imran, M.; Zhao, J. Appl. Sci. 2022, 12, 9933. https://doi.org/10.3390/app12199933.Search in Google Scholar

25. Zhang, X.; Wang, Z.; Hou, Y.; Yan, Y.; Zhao, J.; Dick, B. J. Mater. Chem. C 2021, 9, 11944. https://doi.org/10.1039/D1TC02535J.Search in Google Scholar

26. Bassan, E.; Gualandi, A.; Cozzi, P. G.; Ceroni, P. Chem. Sci. 2021, 12, 6607. https://doi.org/10.1039/D1SC00732G.Search in Google Scholar

27. Zhao, J.; Chen, K.; Hou, Y.; Che, Y.; Liu, L.; Jia, D. Org. Biomol. Chem. 2018, 16, 3692. https://doi.org/10.1039/C8OB00421H.Search in Google Scholar

28. Lee, Y. L.; Chou, Y. T.; Su, B. K.; Wu, C. C.; Wang, C. H.; Chang, K. H.; Ho, J. A.; Chou, P. T. J. Am. Chem. Soc. 2022, 144, 17249. https://doi.org/10.1021/jacs.2c07967.Search in Google Scholar

29. Hu, W.; Zhang, X. F.; Liu, M. J. Phys. Chem. C 2021, 125, 5233. https://doi.org/10.1021/acs.jpcc.1c00001.Search in Google Scholar

30. Nguyen, V. N.; Qi, S.; Kim, S.; Kwon, N.; Kim, G.; Yim, Y.; Park, S.; Yoon, J. J. Am. Chem. Soc. 2019, 141, 16243. https://doi.org/10.1021/jacs.9b09220.Search in Google Scholar

31. Liu, Y.; Zhao, J. Chem. Comm. 2012, 48, 3751. https://doi.org/10.1039/C2CC30345K.Search in Google Scholar

32. Wu, W.; Zhao, J.; Sun, J.; Guo, S. J. Org. Chem. 2012, 77, 5305. https://doi.org/10.1021/jo300613g.Search in Google Scholar

33. Huang, L.; Yu, X.; Wu, W.; Zhao, J. Org. Lett. 2012, 14, 2594. https://doi.org/10.1021/ol3008843.Search in Google Scholar

34. Smith, M. B.; Michl, J. Chem. Rev. 2010, 110, 6891. https://doi.org/10.1021/cr1002613.Search in Google Scholar

35. Filatov, M. A.; Karuthedath, S.; Polestshuk, P. M.; Savoie, H.; Flanagan, K. J.; Sy, C.; Sitte, E.; Telitchko, M.; Laquai, F.; Boyle, R. W.; Senge, M. O. J. Am. Chem. Soc. 2017, 139, 6282. https://doi.org/10.1021/jacs.7b00551.Search in Google Scholar

36. Lv, M.; Yu, Y.; Sandoval-Salinas, M. E.; Xu, J.; Lei, Z.; Casanova, D.; Yang, Y.; Chen, J. Angew. Chem., Int. Ed. 2020, 59, 22179. https://doi.org/10.1002/anie.202009439.Search in Google Scholar

37. Wang, Z.; Zhao, J.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y.; Xu, L.; Karatay, A.; Yaglioglu, H. G.; Yildiz, E. A.; Hayvali, M. J. Am. Chem. Soc. 2017, 139, 7831. https://doi.org/10.1021/jacs.7b02063.Search in Google Scholar

38. Wang, Z.; Gao, Y.; Hussain, M.; Kundu, S.; Rane, V.; Hayvali, M.; Yildiz, E. A.; Zhao, J.; Yaglioglu, H. G.; Das, R.; Luo, L.; Li, J. Chem. Eur. J. 2018, 24, 18663. https://doi.org/10.1002/chem.201804212.Search in Google Scholar

39. Zhang, X.; Sukhanov, A. A.; Yildiz, E. A.; Kandrashkin, Y. E.; Zhao, J.; Yaglioglu, H. G.; Voronkova, V. K. ChemPhysChem 2021, 22, 55. https://doi.org/10.1002/cphc.202000861.Search in Google Scholar

40. Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of Molecular Photochemistry: An Introduction; University Science Books: Sausalito, CA, 2009.Search in Google Scholar

41. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Diederich, F. N.; Whetten, R. L.; Rubin, Y.; Alvarez, M. M.; Anz, S. J. J. Phys. Chem. 1991, 95, 11. https://doi.org/10.1021/j100154a006.Search in Google Scholar

42. Margulies, E. A.; Logsdon, J. L.; Miller, C. E.; Ma, L.; Simonoff, E.; Young, R. M.; Schatz, G. C.; Wasielewski, M. R. J. Am. Chem. Soc. 2017, 139, 663. https://doi.org/10.1021/jacs.6b07721.Search in Google Scholar

43. Filatov, M. A. Org. Biomol. Chem. 2020, 18, 10. https://doi.org/10.1039/C9OB02170A.Search in Google Scholar

44. Hu, M.; Sukhanov, A. A.; Zhang, X.; Elmali, A.; Zhao, J.; Ji, S.; Karatay, A.; Voronkova, V. K. J. Phys. Chem. B 2021, 125, 4187. https://doi.org/10.1021/acs.jpcb.1c02071.Search in Google Scholar

45. Rehmat, N.; Kurganskii, I. V.; Mahmood, Z.; Guan, Q. L.; Zhao, J.; Xing, Y. H.; Gurzadyan, G. G.; Fedin, M. V. Chem. Eur. J. 2021, 27, 5521. https://doi.org/10.1002/chem.202005285.Search in Google Scholar

46. Likhtenstein, G. I.; Ishii, K.; Nakatsuji, S. I. Photochem. Photobiol. 2007, 83, 871. https://doi.org/10.1111/j.1751-1097.2007.00141.x.Search in Google Scholar

47. Zhang, X.; Chen, X.; Sun, Y.; Zhao, J. Org. Biomol. Chem. 2024, 22, 5257. https://doi.org/10.1039/D4OB00520A.Search in Google Scholar

48. Kandrashkin, Y.; van der Est, A. Chem. Phys. Lett. 2003, 379, 574. https://doi.org/10.1016/j.cplett.2003.08.073.Search in Google Scholar

49. Avalos, C. E.; Richert, S.; Socie, E.; Karthikeyan, G.; Casano, G.; Stevanato, G.; Kubicki, D. J.; Moser, J. E.; Timmel, C. R.; Lelli, M.; Rossini, A. J.; Ouari, O.; Emsley, L. J. Phys. Chem. A 2020, 124, 6068. https://doi.org/10.1021/acs.jpca.0c03498.Search in Google Scholar

50. Teki, Y.; Tamekuni, H.; Takeuchi, J.; Miura, Y. Angew. Chem., Int. Ed. 2006, 45, 4666. https://doi.org/10.1002/anie.200600898.Search in Google Scholar

51. Kawai, A.; Shibuya, K. J. Photochem. Photobiol. C 2006, 7, 89. https://doi.org/10.1016/j.jphotochemrev.2006.06.001.Search in Google Scholar

52. Franz, M.; Neese, F.; Richert, S. Chem. Sci. 2022, 13, 12358. https://doi.org/10.1039/D2SC04701B.Search in Google Scholar

53. Yang, W.; Zhao, J.; Sonn, C.; Escudero, D.; Karatay, A.; Yaglioglu, H. G.; Küçüköz, B.; Hayvali, M.; Li, C.; Jacquemin, D. J. Phys. Chem. C 2016, 120, 10162. https://doi.org/10.1021/acs.jpcc.6b01584.Search in Google Scholar

54. Mayländer, M.; Chen, S.; Lorenzo, E. R.; Wasielewski, M. R.; Richert, S. J. Am. Chem. Soc. 2021, 143, 7050. https://doi.org/10.1021/jacs.1c01620.Search in Google Scholar

55. Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K.; Stokkum, I. H. M. v.; Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K. M.; Van Stokkum, I. H. M. J. Stat. Soft. 2012, 49, 1. https://doi.org/10.18637/jss.v049.i03.Search in Google Scholar

56. Stoll, S.; Schweiger, A. J. Magn. Reson. 2006, 178, 42. https://doi.org/10.1016/j.jmr.2005.08.013.Search in Google Scholar

57. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011.Search in Google Scholar

58. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/B508541A.Search in Google Scholar

59. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.02; Gaussian, Inc.: Wallingford CT, 2019.Search in Google Scholar

60. Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606.Search in Google Scholar

61. Mayländer, M.; Quintes, T.; Franz, M.; Allonas, X.; Vargas Jentzsch, A.; Richert, S. Chem. Sci. 2023, 14, 5361. https://doi.org/10.1039/D3SC00589E.Search in Google Scholar

62. Ishii, K.; Hirose, Y.; Kobayashi, N. J. Phys. Chem. A 1999, 103, 1986. https://doi.org/10.1021/jp983624o.Search in Google Scholar

63. Castellano, F. N.; Pomestchenko, I. E.; Shikhova, E.; Hua, F.; Muro, M. L.; Rajapakse, N. Coord. Chem. Rev. 2006, 250, 1819. https://doi.org/10.1016/j.ccr.2006.03.007.Search in Google Scholar

64. Adarsh, N.; Avirah, R. R.; Ramaiah, D. Org. Lett. 2010, 12, 5720. https://doi.org/10.1021/ol102562k.Search in Google Scholar

65. Sabatini, R. P.; McCormick, T. M.; Lazarides, T.; Wilson, K. C.; Eisenberg, R.; McCamant, D. W. J. Phys. Chem. Lett. 2011, 2, 223. https://doi.org/10.1021/jz101697y.Search in Google Scholar

66. You, Y.; Nam, W. Chem. Soc. Rev. 2012, 41, 7061. https://doi.org/10.1039/C2CS35171D.Search in Google Scholar

67. Xu, Z.; Huang, Y.; Cao, Y.; Jin, T.; Miller, K. A.; Kaledin, A. L.; Musaev, D. G.; Lian, T.; Egap, E. J. Chem. Phys. 2020, 153, 154201. https://doi.org/10.1063/5.0025972.Search in Google Scholar

68. Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallée, R. A. L.; Beljonne, D.; Van der Auweraer, M.; De Borggraeve, W. M.; Boens, N. J. Phys. Chem. A 2006, 110, 5998. https://doi.org/10.1021/jp054878u.Search in Google Scholar

69. Tripathi, A. K.; Kundu, S.; Das, R. Phys. Chem. Chem. Phys. 2019, 21, 77. https://doi.org/10.1039/C8CP06722H.Search in Google Scholar

70. Zhang, X.; Elmali, A.; Duan, R.; Liu, Q.; Ji, W.; Zhao, J.; Li, C.; Karatay, A. Phys. Chem. Chem. Phys. 2020, 22, 6376. https://doi.org/10.1039/C9CP06914C.Search in Google Scholar

71. Mayländer, M.; Nolden, O.; Franz, M.; Chen, S.; Bancroft, L.; Qiu, Y.; Wasielewski, M. R.; Gilch, P.; Richert, S. Chem. Sci. 2022, 13, 6732. https://doi.org/10.1039/D2SC01899C.Search in Google Scholar

72. Chernick, E. T.; Casillas, R.; Zirzlmeier, J.; Gardner, D. M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M. R.; Guldi, D. M.; Tykwinski, R. R. J. Am. Chem. Soc. 2015, 137, 857. https://doi.org/10.1021/ja510958k.Search in Google Scholar

73. Rane, V.; Das, R. J. Phys. Chem. A 2015, 119, 5515. https://doi.org/10.1021/acs.jpca.5b01989.Search in Google Scholar

74. Dyar, S. M.; Margulies, E. A.; Horwitz, N. E.; Brown, K. E.; Krzyaniak, M. D.; Wasielewski, M. R. J. Phys. Chem. B 2015, 119, 13560. https://doi.org/10.1021/acs.jpcb.5b02378.Search in Google Scholar

75. Colvin, M. T.; Giacobbe, E. M.; Cohen, B.; Miura, T.; Scott, A. M.; Wasielewski, M. R. J. Phys. Chem. A 2010, 114, 1741. https://doi.org/10.1021/jp909212c.Search in Google Scholar

76. Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan, C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2009, 131, 3700. https://doi.org/10.1021/ja808924f.Search in Google Scholar

77. Zhao, Y.; Li, X.; Wang, Z.; Yang, W.; Chen, K.; Zhao, J.; Gurzadyan, G. G. J. Phys. Chem. C 2018, 122, 3756. https://doi.org/10.1021/acs.jpcc.7b11872.Search in Google Scholar

78. Mahmood, Z.; Sukhanov, A. A.; Rehmat, N.; Hu, M.; Elmali, A.; Xiao, Y.; Zhao, J.; Karatay, A.; Dick, B.; Voronkova, V. K. J. Phys. Chem. B 2021, 125, 9317. https://doi.org/10.1021/acs.jpcb.1c05032.Search in Google Scholar

79. Mambetov, A.; Sukhanov, A.; Zhang, X.; Zhao, J.; Voronkova, V. K. Appl. Magn. Reson. 2024, 55, 1553. https://doi.org/10.1007/s00723-024-01654-y.Search in Google Scholar

80. Sukhanov, A. A.; Konov, K. B.; Salikhov, K. M.; Voronkova, V. K.; Mikhalitsyna, E. A.; Tyurin, V. S. Appl. Magn. Reson. 2015, 46, 1199. https://doi.org/10.1007/s00723-015-0705-0.Search in Google Scholar

81. Rozenshtein, V.; Berg, A.; Stavitski, E.; Levanon, H.; Franco, L.; Corvaja, C. J. Phys. Chem. A 2005, 109, 11144. https://doi.org/10.1021/jp0540104.Search in Google Scholar

82. Ishii, K.; Ishizaki, T.; Kobayashi, N. Appl. Magn. Reson. 2003, 23, 369. https://doi.org/10.1007/BF03166627.Search in Google Scholar

83. Hu, C.; Vo, C.; Merchant, R. R.; Chen, S.; Hughes, J. M. E.; Peters, B. K.; Qin, T. J. Am. Chem. Soc. 2023, 145, 14064. https://doi.org/10.1021/jacs.2c11664.Search in Google Scholar

84. Mizuochi, N.; Ohba, Y.; Yamauchi, S. J. Phys. Chem. A 1997, 101, 5966. https://doi.org/10.1021/jp971569y.Search in Google Scholar

85. Chen, X.; Rehmat, N.; Kurganskii, I. V.; Maity, P.; Elmali, A.; Zhao, J.; Karatay, A.; Mohammed, O. F.; Fedin, M. V. Chem. Eur. J. 2023, 29, e202302137. https://doi.org/10.1002/chem.202302137.Search in Google Scholar

86. Quintes, T.; Mayländer, M.; Richert, S. Nat. Rev. Chem. 2023, 7, 75. https://doi.org/10.1038/s41570-022-00453-y.Search in Google Scholar

87. Dirac, P. A. M.; Fowler, R. H. Proc. R. Soc. Lond. A. 1926, 112, 661. https://doi.org/10.1098/rspa.1926.0133.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0487).


Received: 2025-04-21
Accepted: 2025-06-03
Published Online: 2025-07-09

© 2025 IUPAC & De Gruyter

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0487/pdf
Scroll to top button