Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads
-
Zhanjun Li
, Andrey A. Sukhanov
, Takuma Ito , Greta Sambucari , Xi Chen, Laura Bussotti
, Jianzhang Zhao, Violeta K. Voronkova
, Mariangela Di Donato
and Yuki Kurashige
Abstract
4-Amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was linked to perylene-3,4:9,10-bis(dicarboximide) (PBI) at varying distances and orientations. PBI-TEMPO dyads with the radical linked at the bay-position show a charge transfer absorption band in the UV−vis absorption spectra. With increasing solvent polarity, a fluorescence quenching is observed for these dyads, whereas for a derivative with TEMPO attached at the imide-position, such polarity dependency for fluorescence spectra was not observed. Steady state and femtosecond/nanosecond time-resolved optical spectroscopy confirmed the occurrence of radical-enhanced intersystem crossing (REISC. kISC = (23 ps)−1 − (0.5 ns)−1). The lifetime of the 3*PBI state (τT = 1.0–7.6 μs) depends on the distance and orientations between TEMPO and PBI units. The results indicate that stronger electron spin–spin dipolar interaction (vdd) between the radical and the chromophore improve REISC efficiency. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates different electron exchange interactions (JTR) in the dyads, varying from ferromagnetic interaction corresponding to strong exchange regime to weak antiferromagnetic exchange interaction with increasing the distance between PBI and TEMPO units. Transient-nutation experiments further clarify the TREPR signals. DFT calculations indicate that changes in the dyad structure alter the exchange coupling from ferromagnetic (JTR = 0.47 cm−1) to antiferromagnetic (JTR = −0.03 cm−1 and −0.01 cm−1).
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 22473021 and U2001222
Funding source: Fundamental Research Funds for the Central Universities
Award Identifier / Grant number: DUT22LAB610
Funding source: National Key Research and Development Program of China
Award Identifier / Grant number: No. 2023YFE0197600
Funding source: Kazan Scientific Centre, Russian Academy of Sciences
Funding source: Research and Innovation Team Project of Dalian University of Technology
Award Identifier / Grant number: DUT2022TB10
Acknowledgments
J.Z. thanks the NSFC (22473021 and U2001222), the National Key Research and Development Program of China (the Ministry of Science and Technology, No. 2023YFE0197600), the Research and Innovation Team Project of Dalian University of Technology (DUT2022TB10), the Fundamental Research Funds for the Central Universities (DUT22LAB610) and the State Key Laboratory of Fine Chemicals for financial support. A.A.S. and V.K.V. acknowledge financial support from the government assignment for FRC Kazan Scientific Centre of RAS. M.D.D. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement NO. 871124 Laser lab-Europe for the support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: J.Z. thanks the NSFC (22473021 and U2001222), the National Key Research and Development Program of China (the Ministry of Science and Technology, No. 2023YFE0197600), the Research and Innovation Team Project of Dalian University of Technology (DUT2022TB10), the Fundamental Research Funds for the Central Universities (DUT22LAB610) and the State Key Laboratory of Fine Chemicals for financial support. A.A.S. and V.K.V. acknowledge financial support from the government assignment for FRC Kazan Scientific Centre of RAS. M.D.D. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement NO. 871124 Laser lab-Europe for the support.
-
Data availability: The data that support the findings of this study are available in the Supporting Information of this article.
References
1. Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. https://doi.org/10.1039/C2CS35203F.Search in Google Scholar
2. Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828. https://doi.org/10.1002/anie.201200223.Search in Google Scholar
3. Hari, D. P.; König, B. Chem. Comm. 2014, 50, 6688. https://doi.org/10.1039/C4CC00751D.Search in Google Scholar
4. Lyu, X.; Huang, S.; Song, H.; Liu, Y.; Wang, Q. RSC Adv. 2019, 9, 36213. https://doi.org/10.1039/C9RA06596B.Search in Google Scholar
5. Barzanò, G.; Mao, R.; Garreau, M.; Waser, J.; Hu, X. Org. Lett. 2020, 22, 5412. https://doi.org/10.1021/acs.orglett.0c01769.Search in Google Scholar
6. You, Y.; Jeong, D. Y. Synlett 2022, 33, 1142. https://doi.org/10.1055/a-1608-5633.Search in Google Scholar
7. Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77. https://doi.org/10.1039/C2CS35216H.Search in Google Scholar
8. Wang, Y.; Huang, X.; Tang, Y.; Zou, J.; Wang, P.; Zhang, Y.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 8103. https://doi.org/10.1039/C8SC03386B.Search in Google Scholar
9. Zou, J.; Wang, P.; Wang, Y.; Liu, G.; Zhang, Y.; Zhang, Q.; Shao, J.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2019, 10, 268. https://doi.org/10.1039/C8SC02443J.Search in Google Scholar
10. Wu, S.; Li, A.; Zhao, X.; Zhang, C.; Yu, B.; Zhao, N.; Xu, F. ACS Appl. Mater. Interfaces 2019, 11, 17177. https://doi.org/10.1021/acsami.9b01149.Search in Google Scholar
11. Singh-Rachford, T. N.; Castellano, F. N. Coord. Chem. Rev. 2010, 254, 2560. https://doi.org/10.1016/j.ccr.2010.01.003.Search in Google Scholar
12. Häring, M.; Pérez-Ruiz, R.; Jacobi von Wangelin, A.; Díaz, D. D. Chem. Comm. 2015, 51, 16848. https://doi.org/10.1039/C5CC06917C.Search in Google Scholar
13. Schad, C.; Avellanal-Zaballa, E.; Rebollar, E.; Ray, C.; Duque-Redondo, E.; Moreno, F.; Maroto, B. L.; Bañuelos, J.; García-Moreno, I.; De la Moya, S. Phys. Chem. Chem. Phys. 2022, 24, 27441. https://doi.org/10.1039/D2CP04006A.Search in Google Scholar
14. Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323. https://doi.org/10.1039/C3CS35531D.Search in Google Scholar
15. Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904. https://doi.org/10.1039/C5CS00364D.Search in Google Scholar
16. Lee, J. M.; Park, J.; Yoon, J. H.; Kim, J.; Kim, J. P. ChemPhotoChem 2023, 7, e202200326. https://doi.org/10.1002/cptc.202200326.Search in Google Scholar
17. Wei, Y.; Zhou, M.; Zhou, Q.; Zhou, X.; Liu, S.; Zhang, S.; Zhang, B. Phys. Chem. Chem. Phys. 2017, 19, 22049. https://doi.org/10.1039/C7CP03840B.Search in Google Scholar
18. Li, Y.; Wei, Y.; Zhou, X. J. Photochem. Photobiol. A 2020, 400, 112713. https://doi.org/10.1016/j.jphotochem.2020.112713.Search in Google Scholar
19. Yanai, N.; Kozue, M.; Amemori, S.; Kabe, R.; Adachi, C.; Kimizuka, N. J. Mater. Chem. C 2016, 4, 6447. https://doi.org/10.1039/C6TC01816E.Search in Google Scholar
20. Singh-Rachford, T. N.; Castellano, F. N. J. Phys. Chem. A 2009, 113, 5912. https://doi.org/10.1021/jp9021163.Search in Google Scholar
21. Hou, Y.; Liu, Q.; Zhao, J. Chem. Comm. 2020, 56, 1721. https://doi.org/10.1039/C9CC09058D.Search in Google Scholar
22. Wang, Z.; Toffoletti, A.; Hou, Y.; Zhao, J.; Barbon, A.; Dick, B. Chem. Sci. 2021, 12, 2829. https://doi.org/10.1039/D0SC05494A.Search in Google Scholar
23. Xiao, X.; Zhao, X.; Chen, X.; Zhao, J. Molecules 2023, 28, 2170. https://doi.org/10.3390/molecules28052170.Search in Google Scholar
24. Xiao, X.; Ye, K.; Imran, M.; Zhao, J. Appl. Sci. 2022, 12, 9933. https://doi.org/10.3390/app12199933.Search in Google Scholar
25. Zhang, X.; Wang, Z.; Hou, Y.; Yan, Y.; Zhao, J.; Dick, B. J. Mater. Chem. C 2021, 9, 11944. https://doi.org/10.1039/D1TC02535J.Search in Google Scholar
26. Bassan, E.; Gualandi, A.; Cozzi, P. G.; Ceroni, P. Chem. Sci. 2021, 12, 6607. https://doi.org/10.1039/D1SC00732G.Search in Google Scholar
27. Zhao, J.; Chen, K.; Hou, Y.; Che, Y.; Liu, L.; Jia, D. Org. Biomol. Chem. 2018, 16, 3692. https://doi.org/10.1039/C8OB00421H.Search in Google Scholar
28. Lee, Y. L.; Chou, Y. T.; Su, B. K.; Wu, C. C.; Wang, C. H.; Chang, K. H.; Ho, J. A.; Chou, P. T. J. Am. Chem. Soc. 2022, 144, 17249. https://doi.org/10.1021/jacs.2c07967.Search in Google Scholar
29. Hu, W.; Zhang, X. F.; Liu, M. J. Phys. Chem. C 2021, 125, 5233. https://doi.org/10.1021/acs.jpcc.1c00001.Search in Google Scholar
30. Nguyen, V. N.; Qi, S.; Kim, S.; Kwon, N.; Kim, G.; Yim, Y.; Park, S.; Yoon, J. J. Am. Chem. Soc. 2019, 141, 16243. https://doi.org/10.1021/jacs.9b09220.Search in Google Scholar
31. Liu, Y.; Zhao, J. Chem. Comm. 2012, 48, 3751. https://doi.org/10.1039/C2CC30345K.Search in Google Scholar
32. Wu, W.; Zhao, J.; Sun, J.; Guo, S. J. Org. Chem. 2012, 77, 5305. https://doi.org/10.1021/jo300613g.Search in Google Scholar
33. Huang, L.; Yu, X.; Wu, W.; Zhao, J. Org. Lett. 2012, 14, 2594. https://doi.org/10.1021/ol3008843.Search in Google Scholar
34. Smith, M. B.; Michl, J. Chem. Rev. 2010, 110, 6891. https://doi.org/10.1021/cr1002613.Search in Google Scholar
35. Filatov, M. A.; Karuthedath, S.; Polestshuk, P. M.; Savoie, H.; Flanagan, K. J.; Sy, C.; Sitte, E.; Telitchko, M.; Laquai, F.; Boyle, R. W.; Senge, M. O. J. Am. Chem. Soc. 2017, 139, 6282. https://doi.org/10.1021/jacs.7b00551.Search in Google Scholar
36. Lv, M.; Yu, Y.; Sandoval-Salinas, M. E.; Xu, J.; Lei, Z.; Casanova, D.; Yang, Y.; Chen, J. Angew. Chem., Int. Ed. 2020, 59, 22179. https://doi.org/10.1002/anie.202009439.Search in Google Scholar
37. Wang, Z.; Zhao, J.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y.; Xu, L.; Karatay, A.; Yaglioglu, H. G.; Yildiz, E. A.; Hayvali, M. J. Am. Chem. Soc. 2017, 139, 7831. https://doi.org/10.1021/jacs.7b02063.Search in Google Scholar
38. Wang, Z.; Gao, Y.; Hussain, M.; Kundu, S.; Rane, V.; Hayvali, M.; Yildiz, E. A.; Zhao, J.; Yaglioglu, H. G.; Das, R.; Luo, L.; Li, J. Chem. Eur. J. 2018, 24, 18663. https://doi.org/10.1002/chem.201804212.Search in Google Scholar
39. Zhang, X.; Sukhanov, A. A.; Yildiz, E. A.; Kandrashkin, Y. E.; Zhao, J.; Yaglioglu, H. G.; Voronkova, V. K. ChemPhysChem 2021, 22, 55. https://doi.org/10.1002/cphc.202000861.Search in Google Scholar
40. Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of Molecular Photochemistry: An Introduction; University Science Books: Sausalito, CA, 2009.Search in Google Scholar
41. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Diederich, F. N.; Whetten, R. L.; Rubin, Y.; Alvarez, M. M.; Anz, S. J. J. Phys. Chem. 1991, 95, 11. https://doi.org/10.1021/j100154a006.Search in Google Scholar
42. Margulies, E. A.; Logsdon, J. L.; Miller, C. E.; Ma, L.; Simonoff, E.; Young, R. M.; Schatz, G. C.; Wasielewski, M. R. J. Am. Chem. Soc. 2017, 139, 663. https://doi.org/10.1021/jacs.6b07721.Search in Google Scholar
43. Filatov, M. A. Org. Biomol. Chem. 2020, 18, 10. https://doi.org/10.1039/C9OB02170A.Search in Google Scholar
44. Hu, M.; Sukhanov, A. A.; Zhang, X.; Elmali, A.; Zhao, J.; Ji, S.; Karatay, A.; Voronkova, V. K. J. Phys. Chem. B 2021, 125, 4187. https://doi.org/10.1021/acs.jpcb.1c02071.Search in Google Scholar
45. Rehmat, N.; Kurganskii, I. V.; Mahmood, Z.; Guan, Q. L.; Zhao, J.; Xing, Y. H.; Gurzadyan, G. G.; Fedin, M. V. Chem. Eur. J. 2021, 27, 5521. https://doi.org/10.1002/chem.202005285.Search in Google Scholar
46. Likhtenstein, G. I.; Ishii, K.; Nakatsuji, S. I. Photochem. Photobiol. 2007, 83, 871. https://doi.org/10.1111/j.1751-1097.2007.00141.x.Search in Google Scholar
47. Zhang, X.; Chen, X.; Sun, Y.; Zhao, J. Org. Biomol. Chem. 2024, 22, 5257. https://doi.org/10.1039/D4OB00520A.Search in Google Scholar
48. Kandrashkin, Y.; van der Est, A. Chem. Phys. Lett. 2003, 379, 574. https://doi.org/10.1016/j.cplett.2003.08.073.Search in Google Scholar
49. Avalos, C. E.; Richert, S.; Socie, E.; Karthikeyan, G.; Casano, G.; Stevanato, G.; Kubicki, D. J.; Moser, J. E.; Timmel, C. R.; Lelli, M.; Rossini, A. J.; Ouari, O.; Emsley, L. J. Phys. Chem. A 2020, 124, 6068. https://doi.org/10.1021/acs.jpca.0c03498.Search in Google Scholar
50. Teki, Y.; Tamekuni, H.; Takeuchi, J.; Miura, Y. Angew. Chem., Int. Ed. 2006, 45, 4666. https://doi.org/10.1002/anie.200600898.Search in Google Scholar
51. Kawai, A.; Shibuya, K. J. Photochem. Photobiol. C 2006, 7, 89. https://doi.org/10.1016/j.jphotochemrev.2006.06.001.Search in Google Scholar
52. Franz, M.; Neese, F.; Richert, S. Chem. Sci. 2022, 13, 12358. https://doi.org/10.1039/D2SC04701B.Search in Google Scholar
53. Yang, W.; Zhao, J.; Sonn, C.; Escudero, D.; Karatay, A.; Yaglioglu, H. G.; Küçüköz, B.; Hayvali, M.; Li, C.; Jacquemin, D. J. Phys. Chem. C 2016, 120, 10162. https://doi.org/10.1021/acs.jpcc.6b01584.Search in Google Scholar
54. Mayländer, M.; Chen, S.; Lorenzo, E. R.; Wasielewski, M. R.; Richert, S. J. Am. Chem. Soc. 2021, 143, 7050. https://doi.org/10.1021/jacs.1c01620.Search in Google Scholar
55. Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K.; Stokkum, I. H. M. v.; Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K. M.; Van Stokkum, I. H. M. J. Stat. Soft. 2012, 49, 1. https://doi.org/10.18637/jss.v049.i03.Search in Google Scholar
56. Stoll, S.; Schweiger, A. J. Magn. Reson. 2006, 178, 42. https://doi.org/10.1016/j.jmr.2005.08.013.Search in Google Scholar
57. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011.Search in Google Scholar
58. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/B508541A.Search in Google Scholar
59. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.02; Gaussian, Inc.: Wallingford CT, 2019.Search in Google Scholar
60. Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606.Search in Google Scholar
61. Mayländer, M.; Quintes, T.; Franz, M.; Allonas, X.; Vargas Jentzsch, A.; Richert, S. Chem. Sci. 2023, 14, 5361. https://doi.org/10.1039/D3SC00589E.Search in Google Scholar
62. Ishii, K.; Hirose, Y.; Kobayashi, N. J. Phys. Chem. A 1999, 103, 1986. https://doi.org/10.1021/jp983624o.Search in Google Scholar
63. Castellano, F. N.; Pomestchenko, I. E.; Shikhova, E.; Hua, F.; Muro, M. L.; Rajapakse, N. Coord. Chem. Rev. 2006, 250, 1819. https://doi.org/10.1016/j.ccr.2006.03.007.Search in Google Scholar
64. Adarsh, N.; Avirah, R. R.; Ramaiah, D. Org. Lett. 2010, 12, 5720. https://doi.org/10.1021/ol102562k.Search in Google Scholar
65. Sabatini, R. P.; McCormick, T. M.; Lazarides, T.; Wilson, K. C.; Eisenberg, R.; McCamant, D. W. J. Phys. Chem. Lett. 2011, 2, 223. https://doi.org/10.1021/jz101697y.Search in Google Scholar
66. You, Y.; Nam, W. Chem. Soc. Rev. 2012, 41, 7061. https://doi.org/10.1039/C2CS35171D.Search in Google Scholar
67. Xu, Z.; Huang, Y.; Cao, Y.; Jin, T.; Miller, K. A.; Kaledin, A. L.; Musaev, D. G.; Lian, T.; Egap, E. J. Chem. Phys. 2020, 153, 154201. https://doi.org/10.1063/5.0025972.Search in Google Scholar
68. Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallée, R. A. L.; Beljonne, D.; Van der Auweraer, M.; De Borggraeve, W. M.; Boens, N. J. Phys. Chem. A 2006, 110, 5998. https://doi.org/10.1021/jp054878u.Search in Google Scholar
69. Tripathi, A. K.; Kundu, S.; Das, R. Phys. Chem. Chem. Phys. 2019, 21, 77. https://doi.org/10.1039/C8CP06722H.Search in Google Scholar
70. Zhang, X.; Elmali, A.; Duan, R.; Liu, Q.; Ji, W.; Zhao, J.; Li, C.; Karatay, A. Phys. Chem. Chem. Phys. 2020, 22, 6376. https://doi.org/10.1039/C9CP06914C.Search in Google Scholar
71. Mayländer, M.; Nolden, O.; Franz, M.; Chen, S.; Bancroft, L.; Qiu, Y.; Wasielewski, M. R.; Gilch, P.; Richert, S. Chem. Sci. 2022, 13, 6732. https://doi.org/10.1039/D2SC01899C.Search in Google Scholar
72. Chernick, E. T.; Casillas, R.; Zirzlmeier, J.; Gardner, D. M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M. R.; Guldi, D. M.; Tykwinski, R. R. J. Am. Chem. Soc. 2015, 137, 857. https://doi.org/10.1021/ja510958k.Search in Google Scholar
73. Rane, V.; Das, R. J. Phys. Chem. A 2015, 119, 5515. https://doi.org/10.1021/acs.jpca.5b01989.Search in Google Scholar
74. Dyar, S. M.; Margulies, E. A.; Horwitz, N. E.; Brown, K. E.; Krzyaniak, M. D.; Wasielewski, M. R. J. Phys. Chem. B 2015, 119, 13560. https://doi.org/10.1021/acs.jpcb.5b02378.Search in Google Scholar
75. Colvin, M. T.; Giacobbe, E. M.; Cohen, B.; Miura, T.; Scott, A. M.; Wasielewski, M. R. J. Phys. Chem. A 2010, 114, 1741. https://doi.org/10.1021/jp909212c.Search in Google Scholar
76. Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan, C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2009, 131, 3700. https://doi.org/10.1021/ja808924f.Search in Google Scholar
77. Zhao, Y.; Li, X.; Wang, Z.; Yang, W.; Chen, K.; Zhao, J.; Gurzadyan, G. G. J. Phys. Chem. C 2018, 122, 3756. https://doi.org/10.1021/acs.jpcc.7b11872.Search in Google Scholar
78. Mahmood, Z.; Sukhanov, A. A.; Rehmat, N.; Hu, M.; Elmali, A.; Xiao, Y.; Zhao, J.; Karatay, A.; Dick, B.; Voronkova, V. K. J. Phys. Chem. B 2021, 125, 9317. https://doi.org/10.1021/acs.jpcb.1c05032.Search in Google Scholar
79. Mambetov, A.; Sukhanov, A.; Zhang, X.; Zhao, J.; Voronkova, V. K. Appl. Magn. Reson. 2024, 55, 1553. https://doi.org/10.1007/s00723-024-01654-y.Search in Google Scholar
80. Sukhanov, A. A.; Konov, K. B.; Salikhov, K. M.; Voronkova, V. K.; Mikhalitsyna, E. A.; Tyurin, V. S. Appl. Magn. Reson. 2015, 46, 1199. https://doi.org/10.1007/s00723-015-0705-0.Search in Google Scholar
81. Rozenshtein, V.; Berg, A.; Stavitski, E.; Levanon, H.; Franco, L.; Corvaja, C. J. Phys. Chem. A 2005, 109, 11144. https://doi.org/10.1021/jp0540104.Search in Google Scholar
82. Ishii, K.; Ishizaki, T.; Kobayashi, N. Appl. Magn. Reson. 2003, 23, 369. https://doi.org/10.1007/BF03166627.Search in Google Scholar
83. Hu, C.; Vo, C.; Merchant, R. R.; Chen, S.; Hughes, J. M. E.; Peters, B. K.; Qin, T. J. Am. Chem. Soc. 2023, 145, 14064. https://doi.org/10.1021/jacs.2c11664.Search in Google Scholar
84. Mizuochi, N.; Ohba, Y.; Yamauchi, S. J. Phys. Chem. A 1997, 101, 5966. https://doi.org/10.1021/jp971569y.Search in Google Scholar
85. Chen, X.; Rehmat, N.; Kurganskii, I. V.; Maity, P.; Elmali, A.; Zhao, J.; Karatay, A.; Mohammed, O. F.; Fedin, M. V. Chem. Eur. J. 2023, 29, e202302137. https://doi.org/10.1002/chem.202302137.Search in Google Scholar
86. Quintes, T.; Mayländer, M.; Richert, S. Nat. Rev. Chem. 2023, 7, 75. https://doi.org/10.1038/s41570-022-00453-y.Search in Google Scholar
87. Dirac, P. A. M.; Fowler, R. H. Proc. R. Soc. Lond. A. 1926, 112, 661. https://doi.org/10.1098/rspa.1926.0133.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2025-0487).
© 2025 IUPAC & De Gruyter