Startseite Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads

  • Zhanjun Li ORCID logo , Andrey A. Sukhanov , Takuma Ito , Greta Sambucari , Xi Chen ORCID logo , Laura Bussotti , Jianzhang Zhao ORCID logo EMAIL logo , Violeta K. Voronkova ORCID logo EMAIL logo , Mariangela Di Donato ORCID logo EMAIL logo und Yuki Kurashige EMAIL logo
Veröffentlicht/Copyright: 9. Juli 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

4-Amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was linked to perylene-3,4:9,10-bis(dicarboximide) (PBI) at varying distances and orientations. PBI-TEMPO dyads with the radical linked at the bay-position show a charge transfer absorption band in the UV−vis absorption spectra. With increasing solvent polarity, a fluorescence quenching is observed for these dyads, whereas for a derivative with TEMPO attached at the imide-position, such polarity dependency for fluorescence spectra was not observed. Steady state and femtosecond/nanosecond time-resolved optical spectroscopy confirmed the occurrence of radical-enhanced intersystem crossing (REISC. kISC = (23 ps)−1 − (0.5 ns)−1). The lifetime of the 3*PBI state (τT = 1.0–7.6 μs) depends on the distance and orientations between TEMPO and PBI units. The results indicate that stronger electron spin–spin dipolar interaction (vdd) between the radical and the chromophore improve REISC efficiency. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates different electron exchange interactions (JTR) in the dyads, varying from ferromagnetic interaction corresponding to strong exchange regime to weak antiferromagnetic exchange interaction with increasing the distance between PBI and TEMPO units. Transient-nutation experiments further clarify the TREPR signals. DFT calculations indicate that changes in the dyad structure alter the exchange coupling from ferromagnetic (JTR = 0.47 cm−1) to antiferromagnetic (JTR = −0.03 cm−1 and −0.01 cm−1).


Corresponding authors: Jianzhang Zhao, State Key Laboratory of Fine Chemicals, Frontier Science Center of Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, P.R. China, e-mail: ; Violeta K. Voronkova, Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia, e-mail: ; Mariangela Di Donato, LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Firenze, Italy; and ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy, e-mail: ; and Yuki Kurashige, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan, e-mail:
Zhanjun Li, Andrey A. Sukhanov and Takuma Ito contributed equally to this work. Article note: A collection of invited papers based on presentations at the International Conference on Physical Organic Chemistry held on 18-22 August 2024 in Beijing, China.

Award Identifier / Grant number: 22473021 and U2001222

Award Identifier / Grant number: DUT22LAB610

Award Identifier / Grant number: No. 2023YFE0197600

Funding source: Research and Innovation Team Project of Dalian University of Technology

Award Identifier / Grant number: DUT2022TB10

Acknowledgments

J.Z. thanks the NSFC (22473021 and U2001222), the National Key Research and Development Program of China (the Ministry of Science and Technology, No. 2023YFE0197600), the Research and Innovation Team Project of Dalian University of Technology (DUT2022TB10), the Fundamental Research Funds for the Central Universities (DUT22LAB610) and the State Key Laboratory of Fine Chemicals for financial support. A.A.S. and V.K.V. acknowledge financial support from the government assignment for FRC Kazan Scientific Centre of RAS. M.D.D. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement NO. 871124 Laser lab-Europe for the support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: J.Z. thanks the NSFC (22473021 and U2001222), the National Key Research and Development Program of China (the Ministry of Science and Technology, No. 2023YFE0197600), the Research and Innovation Team Project of Dalian University of Technology (DUT2022TB10), the Fundamental Research Funds for the Central Universities (DUT22LAB610) and the State Key Laboratory of Fine Chemicals for financial support. A.A.S. and V.K.V. acknowledge financial support from the government assignment for FRC Kazan Scientific Centre of RAS. M.D.D. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement NO. 871124 Laser lab-Europe for the support.

  7. Data availability: The data that support the findings of this study are available in the Supporting Information of this article.

References

1. Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. https://doi.org/10.1039/C2CS35203F.Suche in Google Scholar

2. Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828. https://doi.org/10.1002/anie.201200223.Suche in Google Scholar

3. Hari, D. P.; König, B. Chem. Comm. 2014, 50, 6688. https://doi.org/10.1039/C4CC00751D.Suche in Google Scholar

4. Lyu, X.; Huang, S.; Song, H.; Liu, Y.; Wang, Q. RSC Adv. 2019, 9, 36213. https://doi.org/10.1039/C9RA06596B.Suche in Google Scholar

5. Barzanò, G.; Mao, R.; Garreau, M.; Waser, J.; Hu, X. Org. Lett. 2020, 22, 5412. https://doi.org/10.1021/acs.orglett.0c01769.Suche in Google Scholar

6. You, Y.; Jeong, D. Y. Synlett 2022, 33, 1142. https://doi.org/10.1055/a-1608-5633.Suche in Google Scholar

7. Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77. https://doi.org/10.1039/C2CS35216H.Suche in Google Scholar

8. Wang, Y.; Huang, X.; Tang, Y.; Zou, J.; Wang, P.; Zhang, Y.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 8103. https://doi.org/10.1039/C8SC03386B.Suche in Google Scholar

9. Zou, J.; Wang, P.; Wang, Y.; Liu, G.; Zhang, Y.; Zhang, Q.; Shao, J.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2019, 10, 268. https://doi.org/10.1039/C8SC02443J.Suche in Google Scholar

10. Wu, S.; Li, A.; Zhao, X.; Zhang, C.; Yu, B.; Zhao, N.; Xu, F. ACS Appl. Mater. Interfaces 2019, 11, 17177. https://doi.org/10.1021/acsami.9b01149.Suche in Google Scholar

11. Singh-Rachford, T. N.; Castellano, F. N. Coord. Chem. Rev. 2010, 254, 2560. https://doi.org/10.1016/j.ccr.2010.01.003.Suche in Google Scholar

12. Häring, M.; Pérez-Ruiz, R.; Jacobi von Wangelin, A.; Díaz, D. D. Chem. Comm. 2015, 51, 16848. https://doi.org/10.1039/C5CC06917C.Suche in Google Scholar

13. Schad, C.; Avellanal-Zaballa, E.; Rebollar, E.; Ray, C.; Duque-Redondo, E.; Moreno, F.; Maroto, B. L.; Bañuelos, J.; García-Moreno, I.; De la Moya, S. Phys. Chem. Chem. Phys. 2022, 24, 27441. https://doi.org/10.1039/D2CP04006A.Suche in Google Scholar

14. Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323. https://doi.org/10.1039/C3CS35531D.Suche in Google Scholar

15. Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904. https://doi.org/10.1039/C5CS00364D.Suche in Google Scholar

16. Lee, J. M.; Park, J.; Yoon, J. H.; Kim, J.; Kim, J. P. ChemPhotoChem 2023, 7, e202200326. https://doi.org/10.1002/cptc.202200326.Suche in Google Scholar

17. Wei, Y.; Zhou, M.; Zhou, Q.; Zhou, X.; Liu, S.; Zhang, S.; Zhang, B. Phys. Chem. Chem. Phys. 2017, 19, 22049. https://doi.org/10.1039/C7CP03840B.Suche in Google Scholar

18. Li, Y.; Wei, Y.; Zhou, X. J. Photochem. Photobiol. A 2020, 400, 112713. https://doi.org/10.1016/j.jphotochem.2020.112713.Suche in Google Scholar

19. Yanai, N.; Kozue, M.; Amemori, S.; Kabe, R.; Adachi, C.; Kimizuka, N. J. Mater. Chem. C 2016, 4, 6447. https://doi.org/10.1039/C6TC01816E.Suche in Google Scholar

20. Singh-Rachford, T. N.; Castellano, F. N. J. Phys. Chem. A 2009, 113, 5912. https://doi.org/10.1021/jp9021163.Suche in Google Scholar

21. Hou, Y.; Liu, Q.; Zhao, J. Chem. Comm. 2020, 56, 1721. https://doi.org/10.1039/C9CC09058D.Suche in Google Scholar

22. Wang, Z.; Toffoletti, A.; Hou, Y.; Zhao, J.; Barbon, A.; Dick, B. Chem. Sci. 2021, 12, 2829. https://doi.org/10.1039/D0SC05494A.Suche in Google Scholar

23. Xiao, X.; Zhao, X.; Chen, X.; Zhao, J. Molecules 2023, 28, 2170. https://doi.org/10.3390/molecules28052170.Suche in Google Scholar

24. Xiao, X.; Ye, K.; Imran, M.; Zhao, J. Appl. Sci. 2022, 12, 9933. https://doi.org/10.3390/app12199933.Suche in Google Scholar

25. Zhang, X.; Wang, Z.; Hou, Y.; Yan, Y.; Zhao, J.; Dick, B. J. Mater. Chem. C 2021, 9, 11944. https://doi.org/10.1039/D1TC02535J.Suche in Google Scholar

26. Bassan, E.; Gualandi, A.; Cozzi, P. G.; Ceroni, P. Chem. Sci. 2021, 12, 6607. https://doi.org/10.1039/D1SC00732G.Suche in Google Scholar

27. Zhao, J.; Chen, K.; Hou, Y.; Che, Y.; Liu, L.; Jia, D. Org. Biomol. Chem. 2018, 16, 3692. https://doi.org/10.1039/C8OB00421H.Suche in Google Scholar

28. Lee, Y. L.; Chou, Y. T.; Su, B. K.; Wu, C. C.; Wang, C. H.; Chang, K. H.; Ho, J. A.; Chou, P. T. J. Am. Chem. Soc. 2022, 144, 17249. https://doi.org/10.1021/jacs.2c07967.Suche in Google Scholar

29. Hu, W.; Zhang, X. F.; Liu, M. J. Phys. Chem. C 2021, 125, 5233. https://doi.org/10.1021/acs.jpcc.1c00001.Suche in Google Scholar

30. Nguyen, V. N.; Qi, S.; Kim, S.; Kwon, N.; Kim, G.; Yim, Y.; Park, S.; Yoon, J. J. Am. Chem. Soc. 2019, 141, 16243. https://doi.org/10.1021/jacs.9b09220.Suche in Google Scholar

31. Liu, Y.; Zhao, J. Chem. Comm. 2012, 48, 3751. https://doi.org/10.1039/C2CC30345K.Suche in Google Scholar

32. Wu, W.; Zhao, J.; Sun, J.; Guo, S. J. Org. Chem. 2012, 77, 5305. https://doi.org/10.1021/jo300613g.Suche in Google Scholar

33. Huang, L.; Yu, X.; Wu, W.; Zhao, J. Org. Lett. 2012, 14, 2594. https://doi.org/10.1021/ol3008843.Suche in Google Scholar

34. Smith, M. B.; Michl, J. Chem. Rev. 2010, 110, 6891. https://doi.org/10.1021/cr1002613.Suche in Google Scholar

35. Filatov, M. A.; Karuthedath, S.; Polestshuk, P. M.; Savoie, H.; Flanagan, K. J.; Sy, C.; Sitte, E.; Telitchko, M.; Laquai, F.; Boyle, R. W.; Senge, M. O. J. Am. Chem. Soc. 2017, 139, 6282. https://doi.org/10.1021/jacs.7b00551.Suche in Google Scholar

36. Lv, M.; Yu, Y.; Sandoval-Salinas, M. E.; Xu, J.; Lei, Z.; Casanova, D.; Yang, Y.; Chen, J. Angew. Chem., Int. Ed. 2020, 59, 22179. https://doi.org/10.1002/anie.202009439.Suche in Google Scholar

37. Wang, Z.; Zhao, J.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y.; Xu, L.; Karatay, A.; Yaglioglu, H. G.; Yildiz, E. A.; Hayvali, M. J. Am. Chem. Soc. 2017, 139, 7831. https://doi.org/10.1021/jacs.7b02063.Suche in Google Scholar

38. Wang, Z.; Gao, Y.; Hussain, M.; Kundu, S.; Rane, V.; Hayvali, M.; Yildiz, E. A.; Zhao, J.; Yaglioglu, H. G.; Das, R.; Luo, L.; Li, J. Chem. Eur. J. 2018, 24, 18663. https://doi.org/10.1002/chem.201804212.Suche in Google Scholar

39. Zhang, X.; Sukhanov, A. A.; Yildiz, E. A.; Kandrashkin, Y. E.; Zhao, J.; Yaglioglu, H. G.; Voronkova, V. K. ChemPhysChem 2021, 22, 55. https://doi.org/10.1002/cphc.202000861.Suche in Google Scholar

40. Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of Molecular Photochemistry: An Introduction; University Science Books: Sausalito, CA, 2009.Suche in Google Scholar

41. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Diederich, F. N.; Whetten, R. L.; Rubin, Y.; Alvarez, M. M.; Anz, S. J. J. Phys. Chem. 1991, 95, 11. https://doi.org/10.1021/j100154a006.Suche in Google Scholar

42. Margulies, E. A.; Logsdon, J. L.; Miller, C. E.; Ma, L.; Simonoff, E.; Young, R. M.; Schatz, G. C.; Wasielewski, M. R. J. Am. Chem. Soc. 2017, 139, 663. https://doi.org/10.1021/jacs.6b07721.Suche in Google Scholar

43. Filatov, M. A. Org. Biomol. Chem. 2020, 18, 10. https://doi.org/10.1039/C9OB02170A.Suche in Google Scholar

44. Hu, M.; Sukhanov, A. A.; Zhang, X.; Elmali, A.; Zhao, J.; Ji, S.; Karatay, A.; Voronkova, V. K. J. Phys. Chem. B 2021, 125, 4187. https://doi.org/10.1021/acs.jpcb.1c02071.Suche in Google Scholar

45. Rehmat, N.; Kurganskii, I. V.; Mahmood, Z.; Guan, Q. L.; Zhao, J.; Xing, Y. H.; Gurzadyan, G. G.; Fedin, M. V. Chem. Eur. J. 2021, 27, 5521. https://doi.org/10.1002/chem.202005285.Suche in Google Scholar

46. Likhtenstein, G. I.; Ishii, K.; Nakatsuji, S. I. Photochem. Photobiol. 2007, 83, 871. https://doi.org/10.1111/j.1751-1097.2007.00141.x.Suche in Google Scholar

47. Zhang, X.; Chen, X.; Sun, Y.; Zhao, J. Org. Biomol. Chem. 2024, 22, 5257. https://doi.org/10.1039/D4OB00520A.Suche in Google Scholar

48. Kandrashkin, Y.; van der Est, A. Chem. Phys. Lett. 2003, 379, 574. https://doi.org/10.1016/j.cplett.2003.08.073.Suche in Google Scholar

49. Avalos, C. E.; Richert, S.; Socie, E.; Karthikeyan, G.; Casano, G.; Stevanato, G.; Kubicki, D. J.; Moser, J. E.; Timmel, C. R.; Lelli, M.; Rossini, A. J.; Ouari, O.; Emsley, L. J. Phys. Chem. A 2020, 124, 6068. https://doi.org/10.1021/acs.jpca.0c03498.Suche in Google Scholar

50. Teki, Y.; Tamekuni, H.; Takeuchi, J.; Miura, Y. Angew. Chem., Int. Ed. 2006, 45, 4666. https://doi.org/10.1002/anie.200600898.Suche in Google Scholar

51. Kawai, A.; Shibuya, K. J. Photochem. Photobiol. C 2006, 7, 89. https://doi.org/10.1016/j.jphotochemrev.2006.06.001.Suche in Google Scholar

52. Franz, M.; Neese, F.; Richert, S. Chem. Sci. 2022, 13, 12358. https://doi.org/10.1039/D2SC04701B.Suche in Google Scholar

53. Yang, W.; Zhao, J.; Sonn, C.; Escudero, D.; Karatay, A.; Yaglioglu, H. G.; Küçüköz, B.; Hayvali, M.; Li, C.; Jacquemin, D. J. Phys. Chem. C 2016, 120, 10162. https://doi.org/10.1021/acs.jpcc.6b01584.Suche in Google Scholar

54. Mayländer, M.; Chen, S.; Lorenzo, E. R.; Wasielewski, M. R.; Richert, S. J. Am. Chem. Soc. 2021, 143, 7050. https://doi.org/10.1021/jacs.1c01620.Suche in Google Scholar

55. Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K.; Stokkum, I. H. M. v.; Snellenburg, J.; Laptenok, S.; Seger, R.; Mullen, K. M.; Van Stokkum, I. H. M. J. Stat. Soft. 2012, 49, 1. https://doi.org/10.18637/jss.v049.i03.Suche in Google Scholar

56. Stoll, S.; Schweiger, A. J. Magn. Reson. 2006, 178, 42. https://doi.org/10.1016/j.jmr.2005.08.013.Suche in Google Scholar

57. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011.Suche in Google Scholar

58. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/B508541A.Suche in Google Scholar

59. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.02; Gaussian, Inc.: Wallingford CT, 2019.Suche in Google Scholar

60. Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606.Suche in Google Scholar

61. Mayländer, M.; Quintes, T.; Franz, M.; Allonas, X.; Vargas Jentzsch, A.; Richert, S. Chem. Sci. 2023, 14, 5361. https://doi.org/10.1039/D3SC00589E.Suche in Google Scholar

62. Ishii, K.; Hirose, Y.; Kobayashi, N. J. Phys. Chem. A 1999, 103, 1986. https://doi.org/10.1021/jp983624o.Suche in Google Scholar

63. Castellano, F. N.; Pomestchenko, I. E.; Shikhova, E.; Hua, F.; Muro, M. L.; Rajapakse, N. Coord. Chem. Rev. 2006, 250, 1819. https://doi.org/10.1016/j.ccr.2006.03.007.Suche in Google Scholar

64. Adarsh, N.; Avirah, R. R.; Ramaiah, D. Org. Lett. 2010, 12, 5720. https://doi.org/10.1021/ol102562k.Suche in Google Scholar

65. Sabatini, R. P.; McCormick, T. M.; Lazarides, T.; Wilson, K. C.; Eisenberg, R.; McCamant, D. W. J. Phys. Chem. Lett. 2011, 2, 223. https://doi.org/10.1021/jz101697y.Suche in Google Scholar

66. You, Y.; Nam, W. Chem. Soc. Rev. 2012, 41, 7061. https://doi.org/10.1039/C2CS35171D.Suche in Google Scholar

67. Xu, Z.; Huang, Y.; Cao, Y.; Jin, T.; Miller, K. A.; Kaledin, A. L.; Musaev, D. G.; Lian, T.; Egap, E. J. Chem. Phys. 2020, 153, 154201. https://doi.org/10.1063/5.0025972.Suche in Google Scholar

68. Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallée, R. A. L.; Beljonne, D.; Van der Auweraer, M.; De Borggraeve, W. M.; Boens, N. J. Phys. Chem. A 2006, 110, 5998. https://doi.org/10.1021/jp054878u.Suche in Google Scholar

69. Tripathi, A. K.; Kundu, S.; Das, R. Phys. Chem. Chem. Phys. 2019, 21, 77. https://doi.org/10.1039/C8CP06722H.Suche in Google Scholar

70. Zhang, X.; Elmali, A.; Duan, R.; Liu, Q.; Ji, W.; Zhao, J.; Li, C.; Karatay, A. Phys. Chem. Chem. Phys. 2020, 22, 6376. https://doi.org/10.1039/C9CP06914C.Suche in Google Scholar

71. Mayländer, M.; Nolden, O.; Franz, M.; Chen, S.; Bancroft, L.; Qiu, Y.; Wasielewski, M. R.; Gilch, P.; Richert, S. Chem. Sci. 2022, 13, 6732. https://doi.org/10.1039/D2SC01899C.Suche in Google Scholar

72. Chernick, E. T.; Casillas, R.; Zirzlmeier, J.; Gardner, D. M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M. R.; Guldi, D. M.; Tykwinski, R. R. J. Am. Chem. Soc. 2015, 137, 857. https://doi.org/10.1021/ja510958k.Suche in Google Scholar

73. Rane, V.; Das, R. J. Phys. Chem. A 2015, 119, 5515. https://doi.org/10.1021/acs.jpca.5b01989.Suche in Google Scholar

74. Dyar, S. M.; Margulies, E. A.; Horwitz, N. E.; Brown, K. E.; Krzyaniak, M. D.; Wasielewski, M. R. J. Phys. Chem. B 2015, 119, 13560. https://doi.org/10.1021/acs.jpcb.5b02378.Suche in Google Scholar

75. Colvin, M. T.; Giacobbe, E. M.; Cohen, B.; Miura, T.; Scott, A. M.; Wasielewski, M. R. J. Phys. Chem. A 2010, 114, 1741. https://doi.org/10.1021/jp909212c.Suche in Google Scholar

76. Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan, C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2009, 131, 3700. https://doi.org/10.1021/ja808924f.Suche in Google Scholar

77. Zhao, Y.; Li, X.; Wang, Z.; Yang, W.; Chen, K.; Zhao, J.; Gurzadyan, G. G. J. Phys. Chem. C 2018, 122, 3756. https://doi.org/10.1021/acs.jpcc.7b11872.Suche in Google Scholar

78. Mahmood, Z.; Sukhanov, A. A.; Rehmat, N.; Hu, M.; Elmali, A.; Xiao, Y.; Zhao, J.; Karatay, A.; Dick, B.; Voronkova, V. K. J. Phys. Chem. B 2021, 125, 9317. https://doi.org/10.1021/acs.jpcb.1c05032.Suche in Google Scholar

79. Mambetov, A.; Sukhanov, A.; Zhang, X.; Zhao, J.; Voronkova, V. K. Appl. Magn. Reson. 2024, 55, 1553. https://doi.org/10.1007/s00723-024-01654-y.Suche in Google Scholar

80. Sukhanov, A. A.; Konov, K. B.; Salikhov, K. M.; Voronkova, V. K.; Mikhalitsyna, E. A.; Tyurin, V. S. Appl. Magn. Reson. 2015, 46, 1199. https://doi.org/10.1007/s00723-015-0705-0.Suche in Google Scholar

81. Rozenshtein, V.; Berg, A.; Stavitski, E.; Levanon, H.; Franco, L.; Corvaja, C. J. Phys. Chem. A 2005, 109, 11144. https://doi.org/10.1021/jp0540104.Suche in Google Scholar

82. Ishii, K.; Ishizaki, T.; Kobayashi, N. Appl. Magn. Reson. 2003, 23, 369. https://doi.org/10.1007/BF03166627.Suche in Google Scholar

83. Hu, C.; Vo, C.; Merchant, R. R.; Chen, S.; Hughes, J. M. E.; Peters, B. K.; Qin, T. J. Am. Chem. Soc. 2023, 145, 14064. https://doi.org/10.1021/jacs.2c11664.Suche in Google Scholar

84. Mizuochi, N.; Ohba, Y.; Yamauchi, S. J. Phys. Chem. A 1997, 101, 5966. https://doi.org/10.1021/jp971569y.Suche in Google Scholar

85. Chen, X.; Rehmat, N.; Kurganskii, I. V.; Maity, P.; Elmali, A.; Zhao, J.; Karatay, A.; Mohammed, O. F.; Fedin, M. V. Chem. Eur. J. 2023, 29, e202302137. https://doi.org/10.1002/chem.202302137.Suche in Google Scholar

86. Quintes, T.; Mayländer, M.; Richert, S. Nat. Rev. Chem. 2023, 7, 75. https://doi.org/10.1038/s41570-022-00453-y.Suche in Google Scholar

87. Dirac, P. A. M.; Fowler, R. H. Proc. R. Soc. Lond. A. 1926, 112, 661. https://doi.org/10.1098/rspa.1926.0133.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0487).


Received: 2025-04-21
Accepted: 2025-06-03
Published Online: 2025-07-09

© 2025 IUPAC & De Gruyter

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0487/pdf
Button zum nach oben scrollen