Home Physical Sciences ZnO/rGO composite for photodegradation of Remazol Brilliant Blue R (RBBR) synthetic dye in Batik waste under UV irradiation
Article
Licensed
Unlicensed Requires Authentication

ZnO/rGO composite for photodegradation of Remazol Brilliant Blue R (RBBR) synthetic dye in Batik waste under UV irradiation

  • Novia Alfiyansyah Putri ORCID logo , Sri Sugiarti ORCID logo EMAIL logo , Charlena , Ahmad Sjahriza and Muhammad Al Muttaqii
Published/Copyright: September 30, 2025

Abstract

The synthetic dye Remazol Brilliant Blue R (RBBR), widely used in the Batik industry, was successfully degraded under UV irradiation using ZnO/rGO composite photocatalysts synthesized with reduced graphene oxide (rGO) derived from rice bran waste. Characterization was performed using X-ray diffraction (XRD), Raman spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), Brunauer–Emmett–Teller (BET) surface area analysis, and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance was evaluated for composites with varying rGO contents: ZR-0 (pure ZnO), ZR-1 (ZnO with 5 mg rGO), and ZR-2 (ZnO with 25 mg rGO). The ZR-1 composite exhibited the highest degradation efficiency of 78.95 % within 240 min, compared to 58.57 % for ZR-0 and 65.70 % for ZR-2. The corresponding pseudo-first-order rate constants were 0.0034 min−1 (ZR-1), 0.0065 min−1 (ZR-0), and 0.0048 min−1 (ZR-2). These results confirm that the addition of a moderate amount of rGO enhances the photocatalytic activity of ZnO, while excessive rGO may reduce UV light absorption due to surface coverage and recombination effects.


Corresponding author: Sri Sugiarti, Faculty of Mathematics and Natural Science, Department of Chemistry, IPB University, Bogor, West Java, 16680, Indonesia, e-mail:

Funding source: The Indonesian Ministry of Education and Technology

Award Identifier / Grant number: (PPS-PTM) 027/E5/PG.02.00.PL/2024

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The Ministry of Education and Technology for funding this research through the Basic Research Scheme Program in Scope Penelitian Pascasarjana (PPS-PTM) 027/E5/PG.02.00.PL/2024, 11th June 2024 and National Research and Innovation Agency (BRIN Indonesia).

  7. Data availability: Not applicable.

References

1. Sing, N. N.; Husaini, A.; Zulkharnain, A.; Roslan, H. A. Decolourisation Capabilities of Ligninolytic Enzymes Produced by Marasmius Cladophyllus UMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes. BioMed Res. Int. 2017, 2017; https://doi.org/10.1155/2017/1325754.Search in Google Scholar PubMed PubMed Central

2. Hassan, M. M.; Carr, C. M. A Critical Review on Recent Advancements of the Removal of Reactive Dyes from Dyehouse Effluent by Ion-Exchange Adsorbents. Chemosphere 2018, 209, 201–219; https://doi.org/10.1016/j.chemosphere.2018.06.043.Search in Google Scholar PubMed

3. Sarkar, C.; Basu, J. K.; Samanta, A. N. Synthesis of Novel ZnO/Geopolymer Nanocomposite Photocatalyst for Degradation of Congo Red Dye Under Visible Light. Environ. Nanotechnol. Monit. Manag. 2021, 16; https://doi.org/10.1016/j.enmm.2021.100521.Search in Google Scholar

4. Anjum, F.; Asiri, A. M.; Khan, M. A.; Khan, M.; Khan, S. B.; Akhtar, K.; Bakhsh, E. M.; Alamry, K. A.; Alfifi, S. Y.; Chakraborty, S. Photo-Degradation, Thermodynamic and Kinetic Study of Carcinogenic Dyes via Zinc Oxide/Graphene Oxide Nanocomposites. J. Mater. Res. Technol. 2021, 15, 3171–3191; https://doi.org/10.1016/j.jmrt.2021.09.086.Search in Google Scholar

5. Bai, N.; Liu, X.; Li, Z.; Ke, X.; Zhang, K.; Wu, Q. High-Efficiency TiO2/ZnO Nanocomposites Photocatalysts by Sol–Gel and Hydrothermal Methods. J. Solgel Sci. Technol. 2021, 99 (1), 92–100; https://doi.org/10.1007/s10971-021-05552-8.Search in Google Scholar

6. Nisar, A.; Saeed, M.; Muneer, M.; Usman, M.; Khan, I. Synthesis and Characterization of ZnO Decorated Reduced Graphene Oxide (ZnO-rGO) and Evaluation of its Photocatalytic Activity Toward Photodegradation of Methylene Blue. Environ. Sci. Pollut. Res. 2022, 29 (1), 418–430; https://doi.org/10.1007/s11356-021-13520-6.Search in Google Scholar PubMed

7. Ong, C. B.; Mohammad, A. W.; Ng, L. Y.; Mahmoudi, E.; Azizkhani, S.; Hayati Hairom, N. H. Solar Photocatalytic and Surface Enhancement of ZnO/rGO Nanocomposite: Degradation of Perfluorooctanoic Acid and Dye. Process Saf. Environ. Prot. 2017, 112, 298–307; https://doi.org/10.1016/j.psep.2017.04.031.Search in Google Scholar

8. Jiang, H.; Zhang, X.; Gu, W.; Feng, X.; Zhang, L.; Weng, Y. Synthesis of ZnO Particles with Multi-Layer and Biomorphic Porous Microstructures and ZnO/rGO Composites and Their Applications for Photocatalysis. Chem. Phys. Lett. 2018, 711, 100–106; https://doi.org/10.1016/j.cplett.2018.08.013.Search in Google Scholar

9. Pang, Y. L.; Tee, S. F.; Limg, S.; Abdullah, A. Z.; Ong, H. C.; Wu, C. H.; Chong, W. C.; Mohammad, A. W.; Mahmoudi, E. Enhancement of Photocatalytic Degradation of Organic Dyes Using ZnO Decorated on Reduced Graphene Oxide (rGO). Desalination Water Treat. 2018, 108, 311–321; https://doi.org/10.5004/dwt.2018.21947.Search in Google Scholar

10. Malik, A. R.; Sharif, S.; Shaheen, F.; Khalid, M.; Iqbal, Y.; Faisal, A.; Aziz, M. H.; Atif, M.; Ahmad, S.; Fakhar-e-Alam, M.; Hossain, N.; Ahmad, H.; Botmart, T. Green Synthesis of RGO-ZnO Mediated Ocimum Basilicum Leaves Extract Nanocomposite for Antioxidant, Antibacterial, Antidiabetic and Photocatalytic Activity. J. Saudi Chem. Soc. 2022, 26 (2); https://doi.org/10.1016/j.jscs.2022.101438.Search in Google Scholar

11. Saeed, M.; Asghar, H.; Khan, I.; Akram, N.; Usman, M. Synthesis of TiO2-g-C3N4 for Efficient Photocatalytic Degradation of Congo Red Dye. Catal. Today 2025, 447, 115154. https://doi.org/10.1016/j.cattod.2024.115154.Search in Google Scholar

12. Tran, D.-T.; Ha, T.-H.; Vu, T.-P.-T.; Nguyen, V.-N.; Pham, T.-D. Novel CeO2-V2O5/rGO Tertiary Photocatalyst for Improved Cefotaxime Degradation Using Visible-Light. Inorg. Chem. Commun. 2024, 161, 112044. https://doi.org/10.1016/j.inoche.2024.112044.Search in Google Scholar

13. Ju, Y.-H.; Ramjan Vali, S. Rice Bran Oil as a Potential Resource for Biodiesel: A Review. J. Sci. Ind. Res. 2005, 64, 866–882.Search in Google Scholar

14. Salanti, A.; Zoia, L.; Orlandi, M.; Zanini, F.; Elegir, G. Structural Characterization and Antioxidant Activity Evaluation of Lignins from Rice Husk. J. Agric. Food Chem. 2010, 58 (18), 10049–10055; https://doi.org/10.1021/jf102188k.Search in Google Scholar PubMed

15. Jeet, K.; Kaur, R. A Novel Approach for Recycling Agricultural Wastes in the Synthesis of Nanomaterials and Their Composites. Mater. Res. Express 2023, 10 (10); https://doi.org/10.1088/2053-1591/acdecb.Search in Google Scholar

16. Choi, E. Y.; Choi, W. S.; Lee, Y. B.; Noh, Y. Y. Production of Graphene by Exfoliation of Graphite in a Volatile Organic Solvent. Nanotechnology 2011, 22 (36); https://doi.org/10.1088/0957-4484/22/36/365601.Search in Google Scholar PubMed

17. Ko, Y. C.; Fang, H. Y.; Chen, D. H. Fabrication of Ag/ZnO/Reduced Graphene Oxide Nanocomposite for SERS Detection and Multiway Killing of Bacteria. J. Alloys Compd. 2017, 695, 1145–1153; https://doi.org/10.1016/j.jallcom.2016.10.241.Search in Google Scholar

18. Windiastuti, E.; Indrasti, N. S.; Hasanudin, U.; Bindar, Y.; Suprihatin, S. The Influence of Pretreatment and Post Treatment with Alkaline Activators on the Adsorption Ability of Biochar from Palm Oil Empty Fruit. J. Ecol. Eng. 2023, 24 (10), 242–251; https://doi.org/10.12911/22998993/170719.Search in Google Scholar

19. Dada, A. O.; Inyinbor, A. A.; Tokula, B. E.; Bello, O. S.; Pal, U. Preparation and Characterization of Rice Husk Activated Carbon-Supported Zinc Oxide Nanocomposite (RHAC-ZnO-NC). Heliyon 2022, 8 (8); https://doi.org/10.1016/j.heliyon.2022.e10167.Search in Google Scholar PubMed PubMed Central

20. Li, C.; Lu, Y.; Yan, J.; Yu, W.; Zhao, R.; Du, S.; Niu, K. Effect of Long-Term Ageing on Graphene Oxide: Structure and Thermal Decomposition. R. Soc. Open Sci. 2021, 8 (12); https://doi.org/10.1098/rsos.202309.Search in Google Scholar PubMed PubMed Central

21. Sujatmiko, F.; Sahroni, I.; Fadillah, G.; Fatimah, I. Visible Light-Responsive Photocatalyst of SnO2/rGO Prepared Using Pometia Pinnata Leaf Extract. Open Chem. 2021, 19 (1), 174–183; https://doi.org/10.1515/chem-2020-0117.Search in Google Scholar

22. Anwar, D. I.; Khumaisah, L. L.; Nurbaeti, N.; Hariyadi, E. R. Synthesis of Reduced Graphene Oxide Based on Rubber Seed Shells and Rice Husks and Their Composites Using the Modified Hummer Method. In IOP Conference Series: Earth and Environmental Science; Institute of Physics, 2023.10.1088/1755-1315/1267/1/012064Search in Google Scholar

23. Yanti, D. R.; Hikmah, U.; Prasetyo, A.; Hastuti, E. The Effect of Microwave Irradiation on Reduced Graphene Oxide from Coconut Shells. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing, 2020.10.1088/1755-1315/456/1/012008Search in Google Scholar

24. Hidayah, N. M. S.; Liu, W. M.; Lai, C. W.; Noriman, N. Z.; Khe, C. S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. In AIP Conference Proceedings; American Institute of Physics Inc., 2017.10.1063/1.5005764Search in Google Scholar

25. Sieradzka, M.; Ślusarczyk, C.; Biniaś, W.; Fryczkowski, R. The Role of the Oxidation and Reduction Parameters on the Properties of the Reduced Graphene Oxide. Coatings 2021, 11 (2), 1–18; https://doi.org/10.3390/coatings11020166.Search in Google Scholar

26. Setiadji, S.; Nuryadin, B. W.; Ramadhan, H.; Sundari, C. D. D.; Sudiarti, T.; Supriadin, A.; Ivansyah, A. L. Preparation of Reduced Graphene Oxide (rGO) Assisted by Microwave Irradiation and Hydrothermal for Reduction Methods. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing, 2018.10.1088/1757-899X/434/1/012079Search in Google Scholar

27. Huang, H. H.; De Silva, K. K. H.; Kumara, G. R. A.; Yoshimura, M. Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide. Sci. Rep. 2018, 8 (1); https://doi.org/10.1038/s41598-018-25194-1.Search in Google Scholar PubMed PubMed Central

28. Le, V. H.; Nguyen, T. H.; Nguyen, H. H.; Huynh, L. T. N.; Vo, A. L.; Nguyen, T. K. T.; Nguyen, D. T.; Lam, V. Q. Fabrication and Electrochemical Behavior Investigation of a Pt-Loaded Reduced Graphene Oxide Composite (Pt@rGO) as a High-Performance Cathode for Dye-Sensitized Solar Cells. Int. J. Photoenergy 2020, 2020; https://doi.org/10.1155/2020/8927124.Search in Google Scholar

29. Soltani, T.; Kyu Lee, B. A Benign Ultrasonic Route to Reduced Graphene Oxide from Pristine Graphite. J. Colloid Interface Sci. 2017, 486, 337–343; https://doi.org/10.1016/j.jcis.2016.09.075.Search in Google Scholar PubMed

30. Sujiono, E. H.; Zurnansyah; Zabrian, D.; Dahlan, M.; Amin, B.; Samnur; Agus, J. Graphene Oxide Based Coconut Shell Waste: Synthesis by Modified Hummers Method and Characterization. Heliyon 2020, 6 (8); https://doi.org/10.1016/j.heliyon.2020.e04568.Search in Google Scholar PubMed PubMed Central

31. Ahamad, T.; Ahmed, A. S. Influence of Graphene Oxide on the Dielectric Properties of Biogenically Synthesized ZnO Nanoparticles. Hybrid Adv. 2023, 3, 100059; https://doi.org/10.1016/j.hybadv.2023.100059.Search in Google Scholar

32. Madi, K.; Chebli, D.; Ait Youcef, H.; Tahraoui, H.; Bouguettoucha, A.; Kebir, M.; Zhang, J.; Amrane, A. Green Fabrication of ZnO Nanoparticles and ZnO/rGO Nanocomposites from Algerian Date Syrup Extract: Synthesis, Characterization, and Augmented Photocatalytic Efficiency in Methylene Blue Degradation. Catalysts 2024, 14 (1); https://doi.org/10.3390/catal14010062.Search in Google Scholar

33. Ramos, P. G.; Luyo, C.; Sánchez, L. A.; Gomez, E. D.; Rodriguez, J. M. The Spinning Voltage Influence on the Growth of ZnO-rGO Nanorods for Photocatalytic Degradation of Methyl Orange Dye. Catalysts 2020, 10 (6); https://doi.org/10.3390/catal10060660.Search in Google Scholar

34. Gang, R.; Xu, L.; Xia, Y.; Zhang, L.; Wang, S.; Li, R. Facile One-Step Production of 2D/2D ZnO/rGO Nanocomposites Under Microwave Irradiation for Photocatalytic Removal of Tetracycline. ACS Omega 2021, 6 (5), 3831–3839; https://doi.org/10.1021/acsomega.0c05559.Search in Google Scholar PubMed PubMed Central

35. Rodwihok, C.; Wongratanaphisan, D.; Thi Ngo, Y. L.; Khandelwal, M.; Hur, S. H.; Chung, J. S. Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity. Nanomaterials 2019, 9 (10); https://doi.org/10.3390/nano9101441.Search in Google Scholar PubMed PubMed Central

36. Gollu, S. R.; Sharma, R.; Srinivas, G.; Kundu, S.; Gupta, D. Incorporation of Silver and Gold Nanostructures for Performance Improvement in P3HT: PCBM Inverted Solar Cell with rGO/ZnO Nanocomposite as an Electron Transport Layer. Org. Electron. 2016, 29, 79–87; https://doi.org/10.1016/j.orgel.2015.11.015.Search in Google Scholar

37. Farooq, A.; Khan, U. A.; Ali, H.; Sathish, M.; Naqvi, S. A. H.; Iqbal, S.; Ali, H.; Mubeen, I.; Amir, M. B.; Mosa, W. F. A.; Baazeem, A.; Moustafa, M.; Alrumman, S.; Shati, A.; Negm, S. Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis Gigantea (Giant Milkweed) and its Biological Applications Against Various Bacterial and Fungal Pathogens. Microorganisms 2022, 10 (11); https://doi.org/10.3390/microorganisms10112195.Search in Google Scholar PubMed PubMed Central

38. Adlan, Z.; Hir, M.; Farhan, N. M.; Nik, H.; Alam, B. One-Pot Sol-Gel Synthesis of a Zinc Oxide-Reduced Graphene Oxide Composite: Photocatalysis and Kinetics Studies Using a Fuzzy Inference System. M. J. Chem. 2022, 24 (2), 37–46.10.55373/mjchem.v24i2.37Search in Google Scholar

39. Baizaee, S. M.; Arabi, M.; Bahador, A. R. A Simple, One-Pot, Low Temperature and Pressure Route for the Synthesis of RGO/ZnO Nanocomposite and Investigating its Photocatalytic Activity. Mater. Sci. Semicond. Process. 2018, 82, 135–142; https://doi.org/10.1016/j.mssp.2018.04.004.Search in Google Scholar

40. Wang, X.; Huang, L.; Zhao, Y.; Zhang, Y.; Zhou, G. Synthesis of Mesoporous ZnO Nanosheets via Facile Solvothermal Method as the Anode Materials for Lithium-Ion Batteries. Nanoscale Res. Lett. 2016, 11 (1), 1–6; https://doi.org/10.1186/s11671-016-1244-9.Search in Google Scholar PubMed PubMed Central

41. Alharthi, F. A.; Alsyahi, A. A.; Alshammari, S. G.; Al-Abdulkarim, H. A.; AlFawaz, A.; Alsalme, A. Synthesis and Characterization of Rgo@Zno Nanocomposites for Esterification of Acetic Acid. ACS Omega 2022, 7 (3), 2786–2797; https://doi.org/10.1021/acsomega.1c05565.Search in Google Scholar PubMed PubMed Central

42. Zeng, Y.; Li, H.; Luo, J.; Yuan, J.; Wang, L.; Liu, C.; Xia, Y.; Liu, M.; Luo, S.; Cai, T.; Liu, S.; Crittenden, J. C. Sea-Urchin-Structure g-C3N4 with Narrow Bandgap (∼2.0 eV) for Efficient Overall Water Splitting Under Visible Light Irradiation. Appl. Catal. B 2019, 249, 275–281; https://doi.org/10.1016/j.apcatb.2019.03.010.Search in Google Scholar

43. Kang, W.; Jimeng, X.; Xitao, W. The Effects of ZnO Morphology on Photocatalytic Efficiency of ZnO/RGO Nanocomposites. Appl. Surf. Sci. 2016, 360, 270–275; https://doi.org/10.1016/j.apsusc.2015.10.190.Search in Google Scholar

44. Lu, H.; Sha, S.; Li, T.; Wen, Q.; Yang, S.; Wu, J.; Wang, K.; Sheng, Z.; Ma, J. One-Step Electrodeposition of ZnO/graphene Composites with Enhanced Capability for Photocatalytic Degradation of Organic Dyes. Front. Chem. 2022, 10; https://doi.org/10.3389/fchem.2022.1061129.Search in Google Scholar PubMed PubMed Central

45. Shabil Sha, M.; Anwar, H.; Musthafa, F. N.; Al-Lohedan, H.; Alfarwati, S.; Rajabathar, J. R.; Khalid Alahmad, J.; Cabibihan, J. J.; Karnan, M.; Kumar Sadasivuni, K. Photocatalytic Degradation of Organic Dyes Using Reduced Graphene Oxide (rGO). Sci. Rep. 2024, 14 (1); https://doi.org/10.1038/s41598-024-53626-8.Search in Google Scholar PubMed PubMed Central

46. Asgharian, M.; Mehdipourghazi, M.; Khoshandam, B.; Keramati, N. Photocatalytic Degradation of Methylene Blue with Synthesized rGO/ZnO/Cu. Chem. Phys. Lett. 2019, 719, 1–7; https://doi.org/10.1016/j.cplett.2019.01.037.Search in Google Scholar

47. Athar, N.; Naz, G.; Ramzan, M.; Shahid Sadiq, M.; Arshad, M.; Muhammad Adeel Sharif, H.; Hendi, A. A.; Almoneef, M. M.; Awad, M. A. Enhanced Sunlight-Driven Photocatalysis Owing to Synergetic Effect of Gold Nanoparticles-Incorporated ZnO/rGO Ternary Heterostructures. J. King Saud Univ. Sci. 2024, 36 (3); https://doi.org/10.1016/j.jksus.2024.103104.Search in Google Scholar

Received: 2025-03-30
Accepted: 2025-09-08
Published Online: 2025-09-30

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0470/html
Scroll to top button