Abstract
Chlorpyrifos strikes out as an extensively utilized organophosphorus insecticide, certified for its neurotoxic properties that have been embroiled in the etiology of Parkinson’s disease, highlighting the imperativeness of constructive degradation strategies. While bioremediation approaches have been explored for the metabolism of chlorpyrifos, there remains a pronounced void in apprehending its degradation via the human gut microbiome. This study addresses this considerable shortfall by scrutinizing the degradative proficiency of Ralstonia pickettii and Escherichia coli, leveraging CellDesigner Ver. 4.4 for the development of gene-regulatory and biochemical pathways. Pathway construction was succeeded by the ascertainment of rate equation employing SBML squeezer 2.1, aiming to elucidate the biochemical and physiological metabolism of chlorpyrifos across various compartments within the human system. Experimental results demonstrated a conspicuous reduction in chlorpyrifos concentration, alongside its metabolites TCP and DETP, over time, facilitated by the action of tcpA, dhpJ, pdeA, and phoA genes derived from the microbial community. These findings stipulate that human gut microbes endow a substantial capability for the degradation of chlorpyrifos and its metabolites, thus promoting the goal of positioning the human gut microbiome as a biomarker to investigate the bioaccumulation dynamics of pesticides within the body and their potential relationship with Parkinson’s disease.
-
Research ethics: No animal and human studies were used.
-
Informed consent: Not applicable.
-
Author contributions: CNT: Experimentation, Formulation and Designing of the experiment, Result Analysis, Interpretation of the data, Compilation of the data, Writing the manuscript, Editing. SS: Overall guidance, Conceptualization, Final editing, Formatting, Proof reading of the results and validation, Manuscript finalization and Communication.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Competing interests: No conflict of interest.
-
Research funding: Not applicable.
-
Data availability: No data was used for the study.
References
1. Chandra, S.; Alam, M. T.; Dey, J.; Sasidharan, B. C. P.; Ray, U.; Srivastava, A. K.; Gandhi, S.; Tripathi, P. P. Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Curr. Top. Med. Chem. 2020, 20 (13), 1142–1153; https://doi.org/10.2174/1568026620666200413091101.Search in Google Scholar PubMed
2. Ritz, B. R.; Paul, K. C.; Bronstein, J. M. Of Pesticides and Men: a California Story of Genes and Environment in Parkinson’s Disease. Curr. Environ. Health Rep. 2016, 3, 40–52; https://doi.org/10.1007/s40572-016-0083-2.Search in Google Scholar PubMed PubMed Central
3. Lim, S. Y.; Klein, C. J. Parkinson’s Dis. 2024, 1.Search in Google Scholar
4. Islam, M. S.; Azim, F.; Saju, H.; Zargaran, A.; Shirzad, M.; Kamal, M.; Fatema, K.; Rehman, S.; Azad, M. M. A.; Ebrahimi-Barough, S. Pesticides and Parkinson’s Disease: Current and Future Perspective. J. Chem. Neuroanat. 2021, 115, 101966; https://doi.org/10.1016/j.jchemneu.2021.101966.Search in Google Scholar PubMed
5. Wang, A.; Cockburn, M.; Ly, T. T.; Bronstein, J. M.; Ritz, B. The Association Between Ambient Exposure to Organophosphates and Parkinson’s Disease Risk. Occup. Environ. Med. 2014, 71 (4), 275; https://doi.org/10.1136/oemed-2013-101394.Search in Google Scholar PubMed PubMed Central
6. Nandhini, A. R.; Harshiny, M.; Gummadi, S. N. Environ. Sci.: Proces. Impacts 2021, 23 (9), 1255.10.1039/D1EM00178GSearch in Google Scholar PubMed
7. Slotkin, T. A.; Seidler, F. J. Developmental Exposure to Organophosphates Triggers Transcriptional Changes in Genes Associated with Parkinson’s Disease in Vitro and in Vivo. Brain Res. Bull. 2011, 86 (5–6), 340–347; https://doi.org/10.1016/j.brainresbull.2011.09.017.Search in Google Scholar PubMed PubMed Central
8. Xiao, J.; Dong, X.; Zhang, X.; Ye, F.; Cheng, J.; Dan, G.; Zhao, Y.; Zou, Z.; Cao, J.; Sai, Y. Pesticides Exposure and Dopaminergic Neurodegeneration. Expo. Health 2021, 13, 295–306; https://doi.org/10.1007/s12403-021-00384-x.Search in Google Scholar
9. Costa, C.; Teodoro, M.; Rugolo, C. A.; Alibrando, C.; Giambo, F.; Briguglio, G.; Fenga, C. MicroRNAs Alteration as Early Biomarkers for Cancer and Neurodegenerative Diseases: New Challenges in Pesticides Exposure. Toxicol. Rep. 2020, 7, 759–767; https://doi.org/10.1016/j.toxrep.2020.05.003.Search in Google Scholar PubMed PubMed Central
10. Timchalk, C.; Busby, A.; Campbell, J. A.; Needham, L. L.; Barr, D. B. Comparative Pharmacokinetics of the Organophosphorus Insecticide Chlorpyrifos and its Major Metabolites Diethylphosphate, Diethylthiophosphate and 3,5,6-Trichloro-2-Pyridinol in the Rat. Toxicology 2007, 237 (1-3), 145–157; https://doi.org/10.1016/j.tox.2007.05.007.Search in Google Scholar PubMed
11. Van Emon, J. M.; Pan, P.; van Breukelen, F. Effects of Chlorpyrifos and Trichloropyridinol on HEK 293 Human Embryonic Kidney Cells. Chemosphere 2018, 191, 537–547; https://doi.org/10.1016/j.chemosphere.2017.10.039.Search in Google Scholar PubMed PubMed Central
12. Dziewirska, E.; Radwan, M.; Wielgomas, B.; Klimowska, A.; Radwan, P.; Kałużny, P.; Hanke, W.; Slodki, M.; Jurewicz, J. Human Semen Quality, Sperm DNA Damage, and the Level of Urinary Concentrations of 1N and TCPY, the Biomarkers of Nonpersistent Insecticides. Am. J. Mens Health 2019, 13 (1), 1; https://doi.org/10.1177/1557988318816598.Search in Google Scholar PubMed PubMed Central
13. Meeker, J. D.; Ryan, L.; Barr, D. B.; Hauser, R. Exposure to Nonpersistent Insecticides and Male Reproductive Hormones. Epidemiology. 2006, 17 (1), 61–68; https://doi.org/10.1097/01.ede.0000190602.14691.70.Search in Google Scholar PubMed
14. Gao, H.; Li, J.; Zhao, G.; Li, Y. 3,5,6-Trichloro-2-Pyridinol Intensifies the Effect of Chlorpyrifos on the Paracrine Function of Sertoli Cells by Preventing Binding of Testosterone and the Androgen Receptor. Toxicology 2021, 460, 152883; https://doi.org/10.1016/j.tox.2021.152883.Search in Google Scholar PubMed
15. Vega, L.; Valverde, M.; Elizondo, G.; Leyva, J. F.; Rojas, E. Diethylthiophosphate and Diethyldithiophosphate Induce Genotoxicity in Hepatic Cell Lines When Activated by Further Biotransformation Via Cytochrome P450. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2009, 679, 39–43; https://doi.org/10.1016/j.mrgentox.2009.07.009.Search in Google Scholar PubMed
16. Ali, J. H.; Abdeen, Z.; Azmi, K.; Berman, T.; Jager, K.; Barnett-Itzhaki, Z.; Walter, M. Influence of Exposure to Pesticides on Telomere Length and Pregnancy Outcome: Diethylphosphates but not Dimethylphosphates are Associated with Accelerated Telomere Attrition in a Palestinian Cohort. Ecotoxicol. Environ. Saf. 2023, 256, 114801; https://doi.org/10.1016/j.ecoenv.2023.114801.Search in Google Scholar PubMed
17. Bhatt, P.; Sethi, K.; Gangola, S.; Bhandari, G.; Verma, A.; Adnan, M.; Sing, Y.; Chaube, S. Modeling and Simulation of Atrazine Biodegradation in Bacteria and Its Effect in Other Living Systems. J. Biomol. Struct. Dyn. 2020, 40 (7), 3285–3295; https://doi.org/10.1080/07391102.2020.1846623.Search in Google Scholar PubMed
18. Balaur, I.; Roy, L.; Mazein, A.; Karaca, S. G.; Dogrusoz, U.; Barillot, E.; Zinovyev, A. cd2sbgnml: Bidirectional Conversion Between CellDesigner and SBGN Formats. Bioinformatics 2020, 36 (8), 2620–2622; https://doi.org/10.1093/bioinformatics/btz969.Search in Google Scholar PubMed
19. Caspi, R.; Billington, R.; Keseler, I. M.; Kothari, A.; Krummenacker, M.; Midford, P. E.; Ong, W. K.; Paley, S.; Subhraveti, P.; Karp, P. D. The MetaCyc Database of Metabolic Pathways and Enzymes – a 2019 Update. Nucleic Acids Res. 2020, 48 (D1), D445–D453; https://doi.org/10.1093/nar/gkz862.Search in Google Scholar PubMed PubMed Central
20. Bhandari, G.; Sharma, M.; Negi, S.; Gangola, S.; Bhatt, P.; Chen, S. System Biology Analysis of Endosulfan Biodegradation in Bacteria and its Effect in Other Living Systems: Modeling and Simulation Studies. J. Biomol. Struct. Dyn. 2022, 40 (23), 13171–13183; https://doi.org/10.1080/07391102.2021.1982773.Search in Google Scholar PubMed
21. Lotti, M.; Moretto, A.; Zoppellari, R.; Dainese, R.; Rizzuto, N.; Barusco, G. Inhibition of Lymphocytic Neuropathy Target Esterase Predicts the Development of Organophosphate-Induced Delayed Polyneuropathy. Arch. Toxicol. 1986, 59, 176–179; https://doi.org/10.1007/bf00316329.Search in Google Scholar
22. Smegal, D. C. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs; Health Effects Division, U.S. Government Printing Office: Washington, DC, 2000; p. 1.Search in Google Scholar
23. Jokanovic, M. Toxicology 2018, 410, 125.10.1016/j.tox.2018.09.009Search in Google Scholar PubMed
24. Pathak, V. M.; Verma, V. K.; Rawat, B. S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; Mohapatra, A.; Pandey, V.; Rana, N.; Cunill, J. M. Current Status of Pesticide Effects on Environment, Human Health and it’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619; https://doi.org/10.3389/fmicb.2022.962619.Search in Google Scholar PubMed PubMed Central
25. Bhatt, P.; Joshi, T.; Bhatt, K.; Zhang, W.; Huang, Y.; Chen, S. Binding Interaction of Glyphosate with Glyphosate Oxidoreductase and C–P lyase: Molecular Docking and Molecular Dynamics Simulation Studies. J. Hazard. Mater. 2021, 409, 124927; https://doi.org/10.1016/j.jhazmat.2020.124927.Search in Google Scholar PubMed
© 2025 IUPAC & De Gruyter