Home Physical Sciences Enterobacter cloacae strain isolated from wastewater, a potential candidate for formulation of bioremediation strategies
Article
Licensed
Unlicensed Requires Authentication

Enterobacter cloacae strain isolated from wastewater, a potential candidate for formulation of bioremediation strategies

  • Honeymol K. Paulson , Emmanuel Simon ORCID logo EMAIL logo , Supriya Radhakrishnan ORCID logo and Denoj Sebastian
Published/Copyright: May 22, 2025

Abstract

Organic pollution of water bodies caused by human activities poses a significant environmental challenge. A promising and sustainable solution to this issue lies in harnessing microorganisms for the bioremediation of contaminated aquatic ecosystems. The present work explores potential of biofilm forming microorganisms as a sustainable solution for pollution control, thereby offering a cost-effective and ecofriendly method to mitigate the harmful effects of organic pollutants in water bodies. In this study, wastewater samples along with sludge, was collected from kitchen sink outlet, to foster biofilm development over a 10-day period. After treatment with pond water and measurement of Biological Oxygen Demand (BOD) reduction, the most efficient biofilm was selected based on BOD values. The selected biofilm exhibited 90 % reduction in BOD. Subsequent experiments revealed substantial BOD reducing capability of one specific bacterial strain (50 % reduction in BOD) which was isolated from the most efficient biofilm. Through biochemical and molecular characterization, the organism was identified as Enterobacter cloacae, specifically designated as E. cloacae honeykp. Qualitative and quantitative assays confirmed biofilm-forming capability of the new isolate. The application of E. cloacae HoneyKP in biofilm-based reactors, biofilters, activated sludge systems, membrane bioreactors etc. holds significant potential in terms if bioremediation of polluted water bodies. By utilizing its biofilm-forming capabilities, this isolate could potentially enhance the degradation of organic pollutants and other toxic compounds, while supporting microbial community resilience. These approaches offer innovative strategies for bioremediation, enabling the efficient treatment of wastewater, restoration of polluted water bodies, and reduction of the environmental impact of anthropogenic contaminants.


Corresponding author: Emmanuel Simon, Department of Lifesciences, University of Calicut, Malappuram, Kerala, 673635, India, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Pesticides and Related Emerging Organic Pollutants Impact on the Environment and Human Health and Its Remediation Strategies held on 7–9 Nov 2024 in Bangalore, India.
  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246; https://doi.org/10.3389/fenvs.2022.880246.Search in Google Scholar

2. Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm-mediated wastewater treatment: a comprehensive review. Mater. Adv. 2023, 4, 1415–1443; https://doi.org/10.1039/d2ma00945e.Search in Google Scholar

3. Li, Y.; Tian, X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors 2012, 12 (3), 2519–2538; https://doi.org/10.3390/s120302519.Search in Google Scholar PubMed PubMed Central

4. Sharma, P.; Singh, S.; Pandey, P.; Tong, A. Y. W. In Current Developments in Biotechnology and Bioengineering: Advances in Phytoremediation Technology; Elsevier: Amsterdam, 2022; pp. 3–18.10.1016/B978-0-323-99907-6.00006-2Search in Google Scholar

5. Mitra, A.; Mukhopadhyay, S. AIMS Bioeng. 2016, 1, 44–59.10.3934/bioeng.2016.1.44Search in Google Scholar

6. Mishra, S.; Huang, Y.; Li, J.; Wu, X.; Zhou, Z.; Lei, Q.; Bhatt, P.; Chen, S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 2022, 294, 133609; https://doi.org/10.1016/j.chemosphere.2022.133609.Search in Google Scholar PubMed

7. Edwards, S. J.; Kjellerup, B. V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 2013, 97 (23), 9909–9921; https://doi.org/10.1007/s00253-013-5216-z.Search in Google Scholar PubMed

8. Singh, R.; Paul, D.; Jain, R. K. Biofilms: implications in bioremediation. Trends Microbiol. 2006, 14 (9), 389–397; https://doi.org/10.1016/j.tim.2006.07.001.Search in Google Scholar PubMed

9. Mohapatra, R. K.; Behera, S. S.; Patra, J. K.; Thatoi, H.; Parhi, P. K. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms: Current Research and Future Trends in Microbial Biofilms; Elsevier: Amsterdam, 2020; pp. 267–281.10.1016/B978-0-444-64279-0.00017-7Search in Google Scholar

10. American Public Health Association. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, 1989.Search in Google Scholar

11. MacFaddin, J. F. Biochemical Tests for Identification of Medical Bacteria; Williams & Wilkins: Baltimore, 1980.Search in Google Scholar

12. Blazevic, D. J.; Ederer, G. M. Principles of Biochemical Tests in Diagnostic Microbiology; Wiley: New York, 1975.Search in Google Scholar

13. Collinson, S. K.; Doig, P. C.; Doran, J. L.; Clouthier, S.; Kay, W. W. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J. Bacteriol. 1993, 175 (1), 12–18; https://doi.org/10.1128/jb.175.1.12-18.1993.Search in Google Scholar PubMed PubMed Central

14. Jebril, N. M. T. Evaluation of two fixation techniques for direct observation of biofilm formation of Bacillus subtilis in situ, on Congo red agar, using scanning electron microscopy. Vet. World. 2020, 13 (6), 1133–1137; https://doi.org/10.14202/vetworld.2020.1133-1137.Search in Google Scholar PubMed PubMed Central

15. Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T. D.; Wilson, E.; Clement, B.; Wentworth, C. D.; Holmes, A. E. Res. Rev. J. Eng. Technol. 2017, 6 (4).Search in Google Scholar

16. Jain, K.; Parida, S.; Mangwani, N.; Dash, H. R.; Das, S. Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. Ann. Microbiol. 2013, 63 (4), 1553–1562; https://doi.org/10.1007/s13213-013-0618-9.Search in Google Scholar

17. Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Curr. Microbiol. 2016, 73 (4), 474–482; https://doi.org/10.1007/s00284-016-1081-1.Search in Google Scholar PubMed

18. Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of different detection methods of biofilm formation in the clinical isolates. J. Infect. Dis. 2011, 15 (4), 305–311; https://doi.org/10.1590/s1413-86702011000400002.Search in Google Scholar

19. Christensen, G. D.; Simpson, W. A.; Bisno, A. L.; Beachey, E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 1982, 37 (1), 318–326; https://doi.org/10.1128/iai.37.1.318-326.1982.Search in Google Scholar PubMed PubMed Central

20. Nie, Z.; Yan, B.; Xu, Y.; Awasthi, M. K.; Yang, H. Characterization of pyridine biodegradation by two Enterobacter sp. strains immobilized on Solidago canadensis L. stem derived biochar. J. Hazard. Mater. 2021, 414, 125577; https://doi.org/10.1016/j.jhazmat.2021.125577.Search in Google Scholar PubMed

21. Joshi, R. V.; Gunawan, C.; Mann, R. We Are One: Multispecies Metabolism of a Biofilm Consortium and Their Treatment Strategies. Front. Microbiol. 2021, 12, 635432; https://doi.org/10.3389/fmicb.2021.635432.Search in Google Scholar PubMed PubMed Central

22. Suman, S.; Tanuja Isolation and Characterization of a Bacterial Strain Enterobacter cloacae (Accession No. KX438060.1) Capable of Degrading DDTs Under Aerobic Conditions and Its Use in Bioremediation of Contaminated Soil. Tanuja. Microbiol. Insights 2021, 14, 11786361211024289; https://doi.org/10.1177/11786361211024289.Search in Google Scholar PubMed PubMed Central

23. Xu, Z.; Wang, D.; Tang, W.; Wang, L.; Li, Q.; Lu, Z.; Liu, H.; Zhong, Y.; He, T.; Guo, S. Sci. Total Environ. 2020, 732, 1392659.10.1016/j.scitotenv.2020.139265Search in Google Scholar PubMed

24. Xu, C.; He, S.; Liu, Y.; Zhang, W.; Lu, D. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU. Chemosphere 2017, 173, 622–629; https://doi.org/10.1016/j.chemosphere.2017.01.005.Search in Google Scholar PubMed

25. Rahman, A.; Nahar, N.; Nawani, N. N.; Jass, J.; Hossain, K.; Saud, Z. A.; Saha, A. K.; Ghosh, S.; Olsson, B.; Mandal, A. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium,Enterobacter cloacaeB2-DHA. J. Environ. Sci. Health A. 2015, 50 (11), 1136–1147; https://doi.org/10.1080/10934529.2015.1047670.Search in Google Scholar PubMed

26. Priyanka, J. V.; Rajalakshmi, S.; Kumar, P. S.; Krishnaswamy, V. G.; Farraj, D. A. l.; Elshikh, M. S.; Gawwad, M. R. A. Environ. Res. 2022, 204, 112136.10.1016/j.envres.2021.112136Search in Google Scholar PubMed

27. Sarker, R. K.; Chakraborty, P.; Paul, P.; Chatterjee, A.; Tribedi, P. Degradation of low-density poly ethylene (LDPE) by Enterobacter cloacae AKS7: a potential step towards sustainable environmental remediation. Arch. Microbiol. 2020, 202 (8), 2117–2125; https://doi.org/10.1007/s00203-020-01926-8.Search in Google Scholar PubMed

28. Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 2002, 56, 187–209; https://doi.org/10.1146/annurev.micro.56.012302.160705.Search in Google Scholar PubMed

29. Larsen, P.; Nielsen, J. L.; Dueholm, M. S.; Wetzel, R.; Otzen, D.; Nielsen, P. H. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 2007, 9 (12), 3077–3090; https://doi.org/10.1111/j.1462-2920.2007.01418.x.Search in Google Scholar PubMed

30. Mani, I. In Biofilm in Bioremediation, Bioremediation of Pollutants; Elsevier: Amsterdam, 2020; pp. 375–385.10.1016/B978-0-12-819025-8.00018-1Search in Google Scholar

31. di Biase, A.; Kowalski, M. S.; Devlin, T. R.; Oleszkiewicz, J. A. Moving bed biofilm reactor technology in municipal wastewater treatment: A review. J. Environ. Manage. 2019, 247, 849–866; https://doi.org/10.1016/j.jenvman.2019.06.053.Search in Google Scholar PubMed

Published Online: 2025-05-22

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0341/html
Scroll to top button