Abstract
Biomimicry, biomimesis and bioinspiration define distinctly different approaches for deepening the understanding of how living systems work and employing this knowledge to meet pressing demands in engineering. Biomimicry involves shear imitation of biological structures that most often do not reproduce the functionality that they have while in the living organisms. Biomimesis aims at reproduction of biological structure-function relationships and advances our knowledge of how different components of complex living systems work. Bioinspiration employs this knowledge in abiotic manners that are optimal for targeted applications. This article introduces and reviews these concepts in a global historic perspective. Representative examples from charge-transfer science and solar-energy engineering illustrate the evolution from biomimetic to bioinspired approaches and show their importance. Bioinspired molecular electrets, aiming at exploration of dipole effects on charge transfer, demonstrate the pintail impacts of biological inspiration that reach beyond its high utilitarian values. The abiotic character of bioinspiration opens doors for the emergence of unprecedented properties and phenomena, beyond what nature can offer.
Article note:
A collection of invited papers based on presentations at the 5th International Conference on Bioinspired and Biobased Chemistry and Materials & 2nd International Conference on Optics, Photonics, & Materials (NICE 2020) held in Nice, France and online, Oct. 12–14, 2020.
Funding source: American Chemical Society Petroleum Research Fund
Award Identifier / Grant number: 60651-ND4
Funding source: Division of Chemistry
Award Identifier / Grant number: CHE 1800602
Funding source: National Science Foundation
-
Research funding: The funding was provided by the USA National Science Foundation, grant CHE 1800602, and by the American Chemical Society, Petroleum Research Fund, grant 60651-ND4.
References
[1] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini. Energy Strateg. Rev. 24, 38 (2019), https://doi.org/10.1016/j.esr.2019.01.006.Search in Google Scholar
[2] P. A. Owusu, S. Asumadu-Sarkodie. Cogent Eng. 3, 1167990 (2016), https://doi.org/10.1080/23311916.2016.1167990.Search in Google Scholar
[3] A. Demirbas. Energy Sources Part A 28, 779 (2006), https://doi.org/10.1080/009083190927985.Search in Google Scholar
[4] A. Henderson-Sellers, M. F. Wilson. Phil. Trans. Roy. Soc. Lond. 309, 285 (1983).10.1098/rsta.1983.0042Search in Google Scholar
[5] A.-E. Becquerel. Compt. Rend. 9, 561 (1839).Search in Google Scholar
[6] V. Kumar, R. L. Shrivastava, S. P. Untawale. Aquat. Pr. 4, 473 (2015), https://doi.org/10.1016/j.aqpro.2015.02.062.Search in Google Scholar
[7] A. A. Lacis, G. A. Schmidt, D. Rind, R. A. Ruedy. Science 330, 356 (2010), https://doi.org/10.1126/science.1190653.Search in Google Scholar PubMed
[8] W. Steffen, K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers, S. Sörlin. Science 347 (2015), https://doi.org/10.1126/science.1259855.Search in Google Scholar PubMed
[9] A. Indermuhle, T. F. Stocker, F. Joos, H. Fischer, H. J. Smith, M. Wahlen, B. Deck, D. Mastroianni, J. Tschumi, T. Blunier, R. Meyer, B. Stauffer. Nature 398, 121 (1999), https://doi.org/10.1038/18158.Search in Google Scholar
[10] G. Ciamician. Science 36, 385 (1912), https://doi.org/10.1126/science.36.926.385.Search in Google Scholar PubMed
[11] V. I. Vullev, J. Phys. Chem. Lett. 2, 503 (2011), https://doi.org/10.1021/jz1016069.Search in Google Scholar
[12] S. Lev-Yadun. Plant Signal. Behav. 13 (2018), https://doi.org/10.1080/15592324.2018.1480846.Search in Google Scholar
[13] A. Nasto, M. Regli, P. T. Brun, J. Alvarado, C. Clanet, A. E. Hosoi. Phys. Rev. Fluids 1 (2016), https://doi.org/10.1103/physrevfluids.1.033905.Search in Google Scholar
[14] E. M. Espinoza, J. M. Larsen-Clinton, M. Krzeszewski, N. Darabedian, G. D. T, V. I. Vullev. Pure Appl. Chem. 89, 1777 (2017), https://doi.org/10.1515/pac-2017-0309.Search in Google Scholar
[15] K. Brubaker, A. Garewal, R. C. Steinhardt, A. P. Esser-Kahn. Nat. Commun. 9 (2018), https://doi.org/10.1038/s41467-018-03052-y.Search in Google Scholar
[16] V. I. Vullev, G. JonesII. Res. Chem. Intermed. 28, 795 (2002), https://doi.org/10.1163/15685670260469429.Search in Google Scholar
[17] D. E. Robertson, R. S. Farid, C. C. Moser, J. L. Urbauer, S. E. Mulholland, R. Pidikiti, J. D. Lear, A. J. Wand, W. F. DeGrado, P. L. Dutton. Nature 368, 425 (1994), https://doi.org/10.1038/368425a0.Search in Google Scholar
[18] C. T. Choma, J. D. Lear, M. J. Nelson, P. L. Dutton, D. E. Robertson, W. F. DeGrado. J. Am. Chem. Soc. 116, 856 (1994), https://doi.org/10.1021/ja00082a005.Search in Google Scholar
[19] G. JonesII, L. N. Lu, V. Vullev, D. Gosztola, S. Greenfield, M. Wasielewski. Bioorg. Med. Chem. Lett. 5, 2385 (1995), https://doi.org/10.1016/0960-894x(95)00416-q.Search in Google Scholar
[20] F. Rabanal, B. R. Gibney, W. F. DeGrado, C. C. Moser, P. L. Dutton. Inorg. Chim. Acta. 243, 213 (1996), https://doi.org/10.1016/0020-1693(95)04910-x.Search in Google Scholar
[21] E. Galoppini, M. A. Fox. J. Am. Chem. Soc. 118, 2299 (1996), https://doi.org/10.1021/ja951555a.Search in Google Scholar
[22] F. Rabanal, W. F. DeGrado, P. L. Dutton. J. Am. Chem. Soc. 118, 473 (1996), https://doi.org/10.1021/ja952831o.Search in Google Scholar
[23] M. W. Mutz, G. L. McLendon, J. F. Wishart, E. R. Gaillard, A. F. Corin. Proc. Natl. Acad. Sci. U.S.A. 93, 9521 (1996), https://doi.org/10.1073/pnas.93.18.9521.Search in Google Scholar
[24] G. V. Kozlov, M. Y. Ogawa. J. Am. Chem. Soc. 119, 8377 (1997), https://doi.org/10.1021/ja970814o.Search in Google Scholar
[25] M. A. Fox, E. Galoppini. J. Am. Chem. Soc. 119, 5277 (1997), https://doi.org/10.1021/ja963269k.Search in Google Scholar
[26] A. Knorr, E. Galoppini, M. A. Fox. J. Phys. Org. Chem. 10, 484 (1997), https://doi.org/10.1002/(sici)1099-1395(199707)10:7<484::aid-poc895>3.0.co;2-l.10.1002/(SICI)1099-1395(199707)10:7<484::AID-POC895>3.0.CO;2-LSearch in Google Scholar
[27] G. Jones, V. VullevII, E. H. Braswell, D. Zhu. J. Am. Chem. Soc. 122, 388 (2000), https://doi.org/10.1021/ja981936z.Search in Google Scholar
[28] A. Y. Kornilova, J. F. Wishart, W. Xiao, R. C. Lasey, A. Fedorova, Y.-K. Shin, M. Y. Ogawa. J. Am. Chem. Soc. 122, 7999 (2000), https://doi.org/10.1021/ja0006954.Search in Google Scholar
[29] G. Jones, V. I. VullevII. Org. Lett. 3, 2457 (2001), https://doi.org/10.1021/ol016123l.Search in Google Scholar
[30] G. Jones, V. I. VullevII. J. Phys. Chem. 105, 6402 (2001), https://doi.org/10.1021/jp010087q.Search in Google Scholar
[31] G. Jones, V. I. VullevII. Org. Lett. 4, 4001 (2002), https://doi.org/10.1021/ol026656+.10.1021/ol026656+Search in Google Scholar
[32] V. I. Vullev, G. Jones. Tetrahedron Lett. 43, 8611 (2002), https://doi.org/10.1016/s0040-4039(02)01895-6.Search in Google Scholar
[33] Y. Zheng, M. A. Case, J. F. Wishart, G. L. McLendon. J. Phys. Chem. B 107, 7288 (2003), https://doi.org/10.1021/jp027092u.Search in Google Scholar
[34] G. Jones, X. ZhouII, V. I. Vullev. Photochem. Photobiol. Sci. 2, 1080 (2003).10.1039/B306490ESearch in Google Scholar
[35] M. A. Case, G. L. McLendon. Accounts Chem. Res. 37, 754 (2004), https://doi.org/10.1021/ar960245+.10.1021/ar960245+Search in Google Scholar PubMed
[36] S. A. Serron, W. S. Aldridge, C. N. Fleming, R. M. Danell, M. H. Baik, M. Sykora, D. M. Dattelbaum, T. J. Meyer. J. Am. Chem. Soc. 126, 14506 (2004), https://doi.org/10.1021/ja030659f.Search in Google Scholar PubMed
[37] M. H. V. Huynh, D. M. Dattelbaum, T. J. Meyer. Coord. Chem. Rev. 249, 457 (2005), https://doi.org/10.1016/j.ccr.2004.07.005.Search in Google Scholar
[38] Y. Chen, J. Viereck, R. Harmer, S. Rangan, R. A. Bartynski, E. Galoppini. J. Am. Chem. Soc. 142, 3489 (2020), https://doi.org/10.1021/jacs.9b12001.Search in Google Scholar PubMed
[39] G. Ghirlanda, A. Osyczka, W. Liu, M. Antolovich, K. M. Smith, P. L. Dutton, A. J. Wand, W. F. DeGrado. J. Am. Chem. Soc. 126, 8141 (2004), https://doi.org/10.1021/ja039935g.Search in Google Scholar PubMed
[40] L. Cristian, P. Piotrowiak, R. S. Farid. J. Am. Chem. Soc. 125, 11814 (2003), https://doi.org/10.1021/ja0292142.Search in Google Scholar PubMed
[41] R. OrS owski, J. A. Clark, J. B. Derr, E. M. Espinoza, M. F. Mayther, O. Staszewska-Krajewska, J. R. Winkler, H. Ja drzejewska, A. Szumna, H. B. Gray, V. I. Vullev, D. T. Gryko. Proc. Natl. Acad. Sci. U. S. A. 118, e2026462118 (2021).10.1073/pnas.2026462118Search in Google Scholar PubMed PubMed Central
[42] G. Steinberg-Yfrach, P. A. Liddell, S.-C. Hung, A. L. Moore, D. Gust, T. A. Moore. Nature 385, 239 (1997), https://doi.org/10.1038/385239a0.Search in Google Scholar
[43] G. Steinberg-Yfrach, J.-L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust, T. A. Moore. Nature 392, 479 (1998), https://doi.org/10.1038/33116.Search in Google Scholar PubMed
[44] I. M. Bennett, H. M. V. Farfano, F. Bogani, A. Primak, P. A. Liddell, L. Otero, L. Sereno, J. J. Silber, A. L. Moore, T. A. Moore, D. Gust. Nature 420, 398 (2002), https://doi.org/10.1038/nature01209.Search in Google Scholar PubMed
[45] P. Kurz. in Solar Energy for Fuels, H. Tüysüz, C. K. Chan (Eds.), p. 49, Springer International Publishing, Cham (2016).Search in Google Scholar
[46] K. S. Joya, H. J. M. de Groot. Int. J. Hydrogen Energy 37, 8787 (2012), https://doi.org/10.1016/j.ijhydene.2012.01.139.Search in Google Scholar
[47] J. S. Kanady, E. Y. Tsui, M. W. Day, T. Agapie. Science 333, 733 (2011), https://doi.org/10.1126/science.1206036.Search in Google Scholar PubMed
[48] J. Limburg, J. S. Vrettos, H. Y. Chen, J. C. de Paula, R. H. Crabtree, G. W. Brudvig. J. Am. Chem. Soc. 123, 423 (2001), https://doi.org/10.1021/ja001090a.Search in Google Scholar PubMed
[49] J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig. Science 283, 1524 (1999).10.1126/science.283.5407.1524Search in Google Scholar PubMed
[50] Z. B. Geng, Y. Sun, Y. Zhang, Y. X. Wang, L. P. Li, K. K. Huang, X. Y. Wang, J. H. Liu, L. Yuan, S. H. Feng. ACS Appl. Mater. Interfaces 10, 37948 (2018), https://doi.org/10.1021/acsami.8b11041.Search in Google Scholar PubMed
[51] S. W. Gersten, G. J. Samuels, T. J. Meyer. J. Am. Chem. Soc. 104, 4029 (1982), https://doi.org/10.1021/ja00378a053.Search in Google Scholar
[52] J. A. Gilbert, D. S. Eggleston, W. R. Murphy, D. A. Geselowitz, S. W. Gersten, D. J. Hodgson, T. J. Meyer. J. Am. Chem. Soc. 107, 3855 (1985), https://doi.org/10.1021/ja00299a017.Search in Google Scholar
[53] J. K. Hurst, J. Z. Zhou, Y. B. Lei. Inorg. Chem. 31, 1010 (1992), https://doi.org/10.1021/ic00032a017.Search in Google Scholar
[54] C. W. Chronister, R. A. Binstead, J. F. Ni, T. J. Meyer. Inorg. Chem. 36, 3814 (1997), https://doi.org/10.1021/ic970393b.Search in Google Scholar
[55] F. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton, T. J. Meyer. Inorg. Chem. 47, 1727 (2008), https://doi.org/10.1021/ic701249s.Search in Google Scholar PubMed
[56] E. L. Lebeau, S. A. Adeyemi, T. J. Meyer. Inorg. Chem. 37, 6476 (1998), https://doi.org/10.1021/ic970908z.Search in Google Scholar PubMed
[57] C. Sens, I. Romero, M. Rodriguez, A. Llobet, T. Parella, J. Benet-Buchholz. J. Am. Chem. Soc. 126, 7798 (2004), https://doi.org/10.1021/ja0486824.Search in Google Scholar PubMed
[58] R. Zong, R. P. Thummel. J. Am. Chem. Soc. 127, 12802 (2005), https://doi.org/10.1021/ja054791m.Search in Google Scholar PubMed
[59] N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard. J. Am. Chem. Soc. 130, 210 (2008), https://doi.org/10.1021/ja074478f.Search in Google Scholar PubMed
[60] J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree. J. Am. Chem. Soc. 131, 8730 (2009), https://doi.org/10.1021/ja901270f.Search in Google Scholar PubMed PubMed Central
[61] J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree. J. Am. Chem. Soc. 132, 16017 (2010), https://doi.org/10.1021/ja104775j.Search in Google Scholar PubMed
[62] D. Mersch, C. Y. Lee, J. Z. Zhang, K. Brinkert, J. C. Fontecilla-Camps, A. W. Rutherford, E. Reisner. J. Am. Chem. Soc. 137, 8541 (2015), https://doi.org/10.1021/jacs.5b03737.Search in Google Scholar PubMed
[63] L. M. Utschig, S. C. Silver, K. L. Mulfort, D. M. Tiede. J. Am. Chem. Soc. 133, 16334 (2011), https://doi.org/10.1021/ja206012r.Search in Google Scholar PubMed
[64] L. M. Utschig, S. R. Soltau, D. M. Tiede. Curr. Opin. Chem. Biol. 25, 1 (2015), https://doi.org/10.1016/j.cbpa.2014.11.019.Search in Google Scholar PubMed
[65] T. R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero. Coord. Chem. Rev. 270, 127 (2014), https://doi.org/10.1016/j.ccr.2013.12.018.Search in Google Scholar
[66] D. Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pecaut, S. Demeshko, F. Meyer, M. Orio, V. Artero, C. Duboc. Nat. Chem. 8, 1054 (2016), https://doi.org/10.1038/nchem.2575.Search in Google Scholar PubMed PubMed Central
[67] M. A. Gross, A. Reynal, J. R. Durrant, E. Reisner. J. Am. Chem. Soc. 136, 356 (2014), https://doi.org/10.1021/ja410592d.Search in Google Scholar PubMed PubMed Central
[68] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Norskov. J. Am. Chem. Soc. 127, 5308 (2005), https://doi.org/10.1021/ja0504690.Search in Google Scholar PubMed
[69] S. Fukuzumi. Eur. J. Inorg. Chem. 2008, 1351 (2008), https://doi.org/10.1002/ejic.200701369.Search in Google Scholar
[70] L. M. Utschig, N. M. Dimitrijevic, O. G. Poluektov, S. D. Chemerisov, K. L. Mulfort, D. M. Tiede. J. Phys. Chem. Lett. 2, 236 (2011), https://doi.org/10.1021/jz101728v.Search in Google Scholar
[71] N. P. Nguyen, B. L. Wadsworth, D. Nishiori, E. A. Reyes Cruz, G. F. Moore. J. Phys. Chem. Lett. 12, 199 (2021), https://doi.org/10.1021/acs.jpclett.0c02386.Search in Google Scholar PubMed
[72] B. L. Wadsworth, D. Khusnutdinova, J. M. Urbine, A. S. Reyes, G. F. Moore. ACS Appl. Mater. Interfaces 12, 3903 (2020), https://doi.org/10.1021/acsami.9b15286.Search in Google Scholar PubMed
[73] B. L. Wadsworth, A. M. Beiler, D. Khusnutdinova, E. A. Reyes Cruz, G. F. Moore. J. Am. Chem. Soc. 141, 15932 (2019), https://doi.org/10.1021/jacs.9b07295.Search in Google Scholar
[74] D. Khusnutdinova, B. L. Wadsworth, M. Flores, A. M. Beiler, E. A. Reyes Cruz, Y. Zenkov, G. F. Moore. ACS Catal. 8, 9888 (2018), https://doi.org/10.1021/acscatal.8b01776.Search in Google Scholar
[75] A. M. Beiler, D. Khusnutdinova, B. L. Wadsworth, G. F. Moore. Inorg. Chem. 56, 12178 (2017), https://doi.org/10.1021/acs.inorgchem.7b01509.Search in Google Scholar
[76] S. N. Karthick, K. V. Hemalatha, K. B. Suresh, F. Manik Clinton, S. Akshaya, H.-J. Kim. Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells, John Wiley & Sons, Inc, Hoboken, NJ, p. 1 (2020).10.1002/9781119557401.ch1Search in Google Scholar
[77] H. Tributsch. Photochem. Photobiol. 16, 261 (1972).10.1111/j.1751-1097.1972.tb06297.xSearch in Google Scholar
[78] K. Hauffe, N. I. Ionescu, A. Meyer-Laack. Naturwissenschaften 59, 165 (1972), https://doi.org/10.1007/bf00637356.Search in Google Scholar
[79] L. L. Larina, E. M. Trukhan. Zh. Fiz. Khim. 53, 1744 (1979).Search in Google Scholar
[80] S. Hotchandani, P. V. Kamat. Chem. Phys. Lett. 191, 320 (1992), https://doi.org/10.1016/0009-2614(92)85308-w.Search in Google Scholar
[81] B. O’Regan, M. Grätzel. Nature 353, 737 (1991), https://doi.org/10.1038/353737a0.Search in Google Scholar
[82] G. J. Meyer. ACS Nano 4, 4337 (2010), https://doi.org/10.1021/nn101591h.Search in Google Scholar PubMed
[83] K. Sharma, V. Sharma, S. S. Sharma. Nanoscale Res. Lett. 13 (2018), https://doi.org/10.1186/s11671-018-2760-6.Search in Google Scholar PubMed PubMed Central
[84] B. C. O’Regan, J. R. Durrant. Acc. Chem. Res. 42, 1799 (2009).10.1021/ar900145zSearch in Google Scholar PubMed
[85] W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Gratzel, D. L. Officer. J. Phys. Chem. C 111, 11760 (2007), https://doi.org/10.1021/jp0750598.Search in Google Scholar
[86] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel. Science 334, 629 (2011), https://doi.org/10.1126/science.1209688.Search in Google Scholar PubMed
[87] Y. C. Chang, C. L. Wang, T. Y. Pan, S. H. Hong, C. M. Lan, H. H. Kuo, C. F. Lo, H. Y. Hsu, C. Y. Lin, E. W. G. Diau. Chem. Commun. 47, 8910 (2011), https://doi.org/10.1039/c1cc12764k.Search in Google Scholar PubMed
[88] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel. Nat. Chem. 6, 242 (2014), https://doi.org/10.1038/nchem.1861.Search in Google Scholar PubMed
[89] K. Hu, R. N. Sampaio, J. Schneider, L. Troian-Gautier, G. J. Meyer. J. Am. Chem. Soc. 142, 16099 (2020), https://doi.org/10.1021/jacs.0c04886.Search in Google Scholar PubMed
[90] S. N. Yun, N. Vlachopoulos, A. Qurashi, S. Ahmad, A. Hagfeldt. Chem. Soc. Rev. 48, 3705 (2019), https://doi.org/10.1039/c8cs00987b.Search in Google Scholar PubMed
[91] Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hu, Z. a. Tan. Sustain. Energy Fuels 4, 4415 (2020), https://doi.org/10.1039/d0se00621a.Search in Google Scholar
[92] S. M. McCullough, J. M. Evans, T. Moot, A. D. Taggart, L. Troian-Gautier, J. F. Cahoon. ACS Appl. Energy Mater. 3, 1496 (2020), https://doi.org/10.1021/acsaem.9b01955.Search in Google Scholar
[93] M. Bonomo, D. Di Girolamo, M. Piccinni, D. P. Dowling, D. Dini. Nanomaterials 10, 167 (2020), https://doi.org/10.3390/nano10010167.Search in Google Scholar PubMed PubMed Central
[94] Y. M. Poronik, G. V. Baryshnikov, I. Deperasińska, E. M. Espinoza, H. Ågren, D. T. Gryko, V. I. Vullev. Commun. Chem. 3, 190 (2020), https://doi.org/10.1038/s42004-020-00434-6.Search in Google Scholar
[95] A. Pecoraro, A. De Maria, P. Delli Veneri, M. Pavone, A. B. Munoz-Garcia. Phys. Chem. Chem. Phys. 22, 28401 (2020), https://doi.org/10.1039/d0cp05328g.Search in Google Scholar PubMed
[96] D. Ursu, M. Vajda, M. Miclau. J. Alloys Compd. 802, 86 (2019), https://doi.org/10.1016/j.jallcom.2019.06.180.Search in Google Scholar
[97] A. Sen, A. Gross. ACS Appl. Energy Mater. 2, 6341 (2019), https://doi.org/10.1021/acsaem.9b00973.Search in Google Scholar
[98] T. Bouwens, S. Mathew, J. N. H. Reek. Faraday Discuss 215, 393 (2019), https://doi.org/10.1039/c8fd00169c.Search in Google Scholar PubMed
[99] N. Zhang, J. Sun, H. Gong. Coatings 9, 137/1 (2019), https://doi.org/10.3390/coatings9020137.Search in Google Scholar
[100] J. Lu, Z. Liu, N. Pai, L. Jiang, U. Bach, A. N. Simonov, Y.-B. Cheng, L. Spiccia. ChemPlusChem 83, 711 (2018), https://doi.org/10.1002/cplu.201800104.Search in Google Scholar PubMed
[101] O. Langmar, C. R. Ganivet, P. Schol, T. Scharl, G. de la Torre, T. Torres, R. D. Costa, D. M. Guldi. J. Mater. Chem. C 6, 5176 (2018), https://doi.org/10.1039/c8tc00769a.Search in Google Scholar
[102] T. T. T. Pham, S. K. Saha, D. Provost, Y. Farre, M. Raissi, Y. Pellegrin, E. Blart, S. Vedraine, B. Ratier, D. Aldakov, F. Odobel, J. Boucle. J. Phys. Chem. C 121, 129 (2017), https://doi.org/10.1021/acs.jpcc.6b10513.Search in Google Scholar
[103] E. M. Espinoza, B. Xia, N. Darabedian, J. M. Larsen, V. Nunez, D. Bao, J. T. Mac, F. Botero, M. Wurch, F. Zhou, V. I. Vullev. Eur. J. Org. Chem. 2016, 343 (2016), https://doi.org/10.1002/ejoc.201501339.Search in Google Scholar
[104] Z. W. Wang, P. K. Nayak, J. A. Caraveo-Frescas, H. N. Alshareef. Adv. Mater. 28, 3831 (2016), https://doi.org/10.1002/adma.201503080.Search in Google Scholar PubMed
[105] M. K. Brennaman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares, D. L. Ashford, R. L. House, G. J. Meyer, J. M. Papanikolas, T. J. Meyer. J. Am. Chem. Soc. 138, 13085 (2016), https://doi.org/10.1021/jacs.6b06466.Search in Google Scholar PubMed
[106] O. Langmar, E. Fazio, P. Schol, G. de la Torre, R. D. Costa, T. Torres, D. M. Guldi. Angew. Chem. Int. Ed. 58, 4056 (2019), https://doi.org/10.1002/anie.201812397.Search in Google Scholar PubMed
[107] K. A. Click, B. M. Schockman, J. T. Dilenschneider, W. D. McCulloch, B. R. Garrett, Y. Yu, M. He, A. E. Curtze, Y. Wu. J. Phys. Chem. C 121, 8787 (2017), https://doi.org/10.1021/acs.jpcc.7b01911.Search in Google Scholar
[108] Y.-Z. Zheng, X. Tao, J.-W. Zhang, X.-S. Lai, N. Li. J. Power Sources 376, 26 (2018), https://doi.org/10.1016/j.jpowsour.2017.11.072.Search in Google Scholar
[109] W. Shockley, H. J. Queisser. J. Appl. Phys. 32, 510 (1961), https://doi.org/10.1063/1.1736034.Search in Google Scholar
[110] S. Guo, D. Bao, S. Upadhyayula, W. Wang, A. B. Guvenc, J. R. Kyle, H. Hosseinibay, K. N. Bozhilov, V. I. Vullev, C. S. Ozkan, M. Ozkan. Adv. Funct. Mater. 23, 5199 (2013), https://doi.org/10.1002/adfm.201203652.Search in Google Scholar
[111] H. Lu, D. Bao, M. Penchev, M. Ghazinejad, V. I. Vullev, C. S. Ozkan, M. Ozkan. Adv. Sci. Lett. 3, 101 (2010), https://doi.org/10.1166/asl.2010.1110.Search in Google Scholar
[112] D. Rehm, A. Weller. Isr. J. Chem. 8, 259 (1970), https://doi.org/10.1002/ijch.197000029.Search in Google Scholar
[113] D. Bao, B. Millare, W. Xia, B. G. Steyer, A. A. Gerasimenko, A. Ferreira, A. Contreras, V. I. Vullev. J. Phys. Chem. 113, 1259 (2009), https://doi.org/10.1021/jp809105f.Search in Google Scholar PubMed
[114] J. B. Derr, J. Tamayo, J. A. Clark, M. Morales, M. F. Mayther, E. M. Espinoza, K. Rybicka-Jasinska, V. I. Vullev. Phys. Chem. Chem. Phys. 22, 21583 (2020), https://doi.org/10.1039/d0cp01556c.Search in Google Scholar PubMed PubMed Central
[115] J. Wan, A. Ferreira, W. Xia, C. H. Chow, K. Takechi, P. V. Kamat, G. Jones, V. I. Vullev. J. Photochem. Photobiol., A 197, 364 (2008), https://doi.org/10.1016/j.jphotochem.2008.01.016.Search in Google Scholar
[116] D. Bao, S. Ramu, A. Contreras, S. Upadhyayula, J. M. Vasquez, G. Beran, V. I. Vullev. J. Phys. Chem. B 114, 14467 (2010), https://doi.org/10.1021/jp101730e.Search in Google Scholar PubMed
[117] R. A. Marcus. J. Chem. Phys. 24, 966 (1956), https://doi.org/10.1063/1.1742723.Search in Google Scholar
[118] R. A. Marcus. J. Chem. Phys. 26, 867 (1957), https://doi.org/10.1063/1.1743423.Search in Google Scholar
[119] R. A. Marcus. J. Chem. Phys. 26, 872 (1957).10.1063/1.1743424Search in Google Scholar
[120] D. Meggiolaro, F. Ambrosio, E. Mosconi, A. Mahata, F. De Angelis. Adv. Energy Mater. 10, 1902748 (2020), https://doi.org/10.1002/aenm.201902748.Search in Google Scholar
[121] Y. Natanzon, A. Azulay, Y. Amouyal. Isr. J. Chem. 60, 768 (2020), https://doi.org/10.1002/ijch.201900101.Search in Google Scholar
[122] M. Scheele. Z. Phys. Chem. 229, 167 (2015), https://doi.org/10.1515/zpch-2014-0587.Search in Google Scholar
[123] I. G. Austin, N. F. Mott. Adv. Phys. 18, 41 (1969), https://doi.org/10.1080/00018736900101267.Search in Google Scholar
[124] L. Landau. Phys. Z. Sowjet Union 3, 664 (1933).Search in Google Scholar
[125] S. I. Pekar. Исследования по электронной теории кристаллов (Studies on the Electron Theory of Crystals). Gosudarstvennoe Izdatel’stvo Tekh.-Teoret. Lit, Oak Ridge, TN (1951).Search in Google Scholar
[126] S. Upadhyayula, D. Bao, B. Millare, S. S. Sylvia, K. M. M. Habib, K. Ashraf, A. Ferreira, S. Bishop, R. Bonderer, S. Baqai, X. Jing, M. Penchev, M. Ozkan, C. S. Ozkan, R. K. Lake, V. I. Vullev. J. Phys. Chem. B 115, 9473 (2011), https://doi.org/10.1021/jp2045383.Search in Google Scholar PubMed
[127] G. N. Chuev, V. D. Lakhno. J. Theor. Biol. 163, 51 (1993), https://doi.org/10.1006/jtbi.1993.1106.Search in Google Scholar PubMed
[128] H. G. Ryu, M. F. Mayther, J. Tamayo, C. Azarias, E. M. Espinoza, M. Banasiewicz, L. G. Lukasiewicz, Y. M. Poronik, A. Jezewski, J. Clark, J. B. Derr, K. H. Ahn, D. T. Gryko, D. Jacquemin, V. I. Vullev. J. Phys. Chem. C 122, 13424 (2018), https://doi.org/10.1021/acs.jpcc.7b11194.Search in Google Scholar
[129] A. Purc, E. M. Espinoza, R. Nazir, J. J. Romero, K. Skonieczny, A. Jeżewski, J. M. Larsen, D. T. Gryko, V. I. Vullev. J. Am. Chem. Soc. 138, 12826 (2016), https://doi.org/10.1021/jacs.6b04974.Search in Google Scholar PubMed
[130] S. Upadhyayula, V. Nunez, E. M. Espinoza, J. M. Larsen, D. Bao, D. Shi, J. T. Mac, B. Anvari, V. I. Vullev. Chem. Sci. 6, 2237 (2015), https://doi.org/10.1039/c4sc02881c.Search in Google Scholar PubMed PubMed Central
[131] J. M. Vasquez, A. Vu, J. S. Schultz, V. I. Vullev. Biotechnol. Prog. 25, 906 (2009), https://doi.org/10.1002/btpr.188.Search in Google Scholar PubMed
[132] F. J. Ambrose, D. James. Proc. Roy. Soc. Lond. 61, 316 (1897).10.1098/rspl.1897.0043Search in Google Scholar
[133] G. Jones, D.-X. YanII, D. J. Gosztola, S. R. Greenfield, M. R. Wasielewski. J. Am. Chem. Soc. 121, 11016 (1999), https://doi.org/10.1021/ja9927319.Search in Google Scholar
[134] J. Hu, B. Xia, D. Bao, A. Ferreira, J. Wan, G. Jones, V. I. Vullev. J. Phys. Chem. 113, 3096 (2009), https://doi.org/10.1021/jp810909v.Search in Google Scholar PubMed
[135] G. Jones, D. YanII, J. Hu, J. Wan, B. Xia, V. I. Vullev. J. Phys. Chem. B 111, 6921 (2007), https://doi.org/10.1021/jp072224a.Search in Google Scholar PubMed
[136] S. J. Mora, E. Odella, G. F. Moore, D. Gust, T. A. Moore, A. L. Moore. Acc. Chem. Res. 51, 445 (2018), https://doi.org/10.1021/acs.accounts.7b00491.Search in Google Scholar PubMed
[137] S. Hammes-Schiffer. Energy Environ. Sci. 5, 7696 (2012), https://doi.org/10.1039/c2ee03361e.Search in Google Scholar
[138] S. Hammes-Schiffer. Acc. Chem. Res. 42, 1881 (2009), https://doi.org/10.1021/ar9001284.Search in Google Scholar PubMed PubMed Central
[139] J. D. Megiatto, D. D. Mendez-Hernandez, M. E. Tejeda-Ferrari, A. L. Teillout, M. J. Llansola-Portoles, G. Kodis, O. G. Poluektov, T. Rajh, V. Mujica, T. L. Groy, D. Gust, T. A. Moore, A. L. Moore. Nat. Chem. 6, 423 (2014).10.1038/nchem.1862Search in Google Scholar PubMed
[140] A. Pannwitz, O. S. Wenger. Dalton Trans. 48, 5861 (2019), https://doi.org/10.1039/c8dt04373f.Search in Google Scholar PubMed
[141] E. Odella, B. L. Wadsworth, S. J. Mora, J. J. Goings, M. T. Huynh, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore. J. Am. Chem. Soc. 141, 14057 (2019), https://doi.org/10.1021/jacs.9b06978.Search in Google Scholar PubMed
[142] W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore. J. Am. Chem. Soc. 142, 21842 (2020), https://doi.org/10.1021/jacs.0c10474.Search in Google Scholar PubMed
[143] Y. Yoneda, S. J. Mora, J. Shee, B. L. Wadsworth, E. A. Arsenault, D. Hait, G. Kodis, D. Gust, G. F. Moore, A. L. Moore, M. Head-Gordon, T. A. Moore, G. R. Fleming. J. Am. Chem. Soc. 143, 3104 (2021), https://doi.org/10.1021/jacs.0c10626.Search in Google Scholar PubMed
[144] M. Krzeszewski, E. M. Espinoza, C. Cervinka, J. B. Derr, J. A. Clark, D. Borchardt, G. J. O. Beran, D. T. Gryko, V. I. Vullev. Angew. Chem. Int. Ed. 57, 12365 (2018), https://doi.org/10.1002/anie.201802637.Search in Google Scholar PubMed
[145] D. Bao, S. Upadhyayula, J. M. Larsen, B. Xia, B. Georgieva, V. Nunez, E. M. Espinoza, J. D. Hartman, M. Wurch, A. Chang, C.-K. Lin, J. Larkin, K. Vasquez, G. J. O. Beran, V. I. Vullev. J. Am. Chem. Soc. 136, 12966 (2014), https://doi.org/10.1021/ja505618n.Search in Google Scholar PubMed
[146] R. A. Marcus. Discuss. Faraday Soc. 21 (1960).10.1039/DF9602900021Search in Google Scholar
[147] S. Yomosa. Sup. Prog. Theor. Phys. 40, 249 (1967), https://doi.org/10.1143/ptps.40.249.Search in Google Scholar
[148] J. B. Derr, J. Tamayo, E. M. Espinoza, J. A. Clark, V. I. Vullev. Can. J. Chem. 96, 843 (2018), https://doi.org/10.1139/cjc-2017-0389.Search in Google Scholar
[149] D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, R. MacKinnon. Science 280, 69 (1998), https://doi.org/10.1126/science.280.5360.69.Search in Google Scholar PubMed
[150] R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. MacKinnon. Nature 415, 287 (2002), https://doi.org/10.1038/415287a.Search in Google Scholar PubMed
[151] Y.-G. K. Shin, M. D. Newton, S. S. Isied. J. Am. Chem. Soc. 125, 3722 (2003), https://doi.org/10.1021/ja020358q.Search in Google Scholar PubMed
[152] J. S. Richardson, D. C. Richardson. in Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman (Ed.), p. 1, Plenum, New York, NY (1989).10.1007/978-1-4613-1571-1_1Search in Google Scholar
[153] L. Zubcevic, S.-Y. Lee. Curr. Opin. Struct. Biol. 58, 314 (2019), https://doi.org/10.1016/j.sbi.2019.06.011.Search in Google Scholar PubMed PubMed Central
[154] J. Ludwiczak, A. Winski, A. M. da Silva Neto, K. Szczepaniak, V. Alva, S. Dunin-Horkawicz. Sci. Rep. 9, 1 (2019), https://doi.org/10.1038/s41598-019-43189-4.Search in Google Scholar PubMed PubMed Central
[155] P. Kumar, M. Bansal. FEBS J. 282, 4415 (2015), https://doi.org/10.1111/febs.13507.Search in Google Scholar PubMed
[156] B. Xia, D. Bao, S. Upadhyayula, G. Jones, V. I. Vullev. J. Org. Chem. 78, 1994 (2013), https://doi.org/10.1021/jo301942g.Search in Google Scholar PubMed
[157] M. K. Ashraf, R. R. Pandey, R. K. Lake, B. Millare, A. A. Gerasimenko, D. Bao, V. I. Vullev. Biotechnol. Prog. 25, 915 (2009), https://doi.org/10.1002/btpr.189.Search in Google Scholar PubMed
[158] K. Rybicka-Jasinska, V. I. Vullev. J. Photochem. Photobiol., A 401, 112779 (2020).10.1016/j.jphotochem.2020.112779Search in Google Scholar
[159] K. Skonieczny, E. M. Espinoza, J. B. Derr, M. Morales, J. M. Clinton, B. Xia, V. I. Vullev. Pure Appl. Chem. 92, 275 (2020), https://doi.org/10.1515/pac-2019-0111.Search in Google Scholar
[160] J. B. Derr, K. Rybicka-Jasińska, E. M. Espinoza, M. Morales, M. K. Billones, J. A. Clark, V. I. Vullev. Biomolecules 11, 429 (2021), https://doi.org/10.3390/biom11030429.Search in Google Scholar PubMed PubMed Central
[161] J. M. Larsen, E. M. Espinoza, J. D. Hartman, C.-K. Lin, M. Wurch, P. Maheshwari, R. K. Kaushal, M. J. Marsella, G. J. O. Beran, V. I. Vullev. Pure Appl. Chem. 87, 779 (2015), https://doi.org/10.1515/pac-2015-0109.Search in Google Scholar
[162] E. M. Espinoza, J. M. Larsen, V. I. Vullev, J. Phys. Chem. Lett. 7, 758 (2016), https://doi.org/10.1021/acs.jpclett.5b02881.Search in Google Scholar PubMed
[163] J. M. Larsen-Clinton, E. M. Espinoza, M. F. Mayther, J. Clark, C. Tao, D. Bao, C. M. Larino, M. Wurch, S. Lara, V. I. Vullev. Phys. Chem. Chem. Phys. 19, 7871 (2017), https://doi.org/10.1039/c7cp00432j.Search in Google Scholar PubMed
[164] J. M. Larsen, E. M. Espinoza, V. I. Vullev. J. Photon. Energy 5, 1, 055598 (2015), https://doi.org/10.1117/1.jpe.5.055598.Search in Google Scholar
[165] E. M. Espinoza, J. M. Larsen, V. I. Vullev. ECS Trans. 66, 1 (2015), https://doi.org/10.1149/06623.0001ecst.Search in Google Scholar
[166] E. M. Espinoza, V. I. Vullev. ECS Trans. 77, 1517 (2017), https://doi.org/10.1149/07711.1517ecst.Search in Google Scholar
[167] E. M. Espinoza, J. A. Clark, J. Soliman, J. B. Derr, M. Morales, V. I. Vullev. J. Electrochem. Soc. 166, H3175 (2019), https://doi.org/10.1149/2.0241905jes.Search in Google Scholar
[168] J. B. Derr, J. A. Clark, M. Morales, E. M. Espinoza, S. Vadhin, V. I. Vullev. RSC Adv. 10, 24419 (2020), https://doi.org/10.1039/d0ra04465b.Search in Google Scholar PubMed PubMed Central
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Bioinspired and biobased chemistry & materials (N.I.C.E. 2020): onsite and online hybrid conference
- Conference papers
- Vapor bubble induced electric current generation
- Photochemistry of phthalocyanine based on spin angular momenta: a kinetic study of fluorescent probes for ascorbic acid
- Study of the influence of autoclave sterilization on the properties of citrate functionalized iron oxide nanoparticles
- What defines biomimetic and bioinspired science and engineering?
- Orthogonal chemistry in the design of rare-earth metal oxyhydrides
- Highly conjugated carbazole-based monomers for the control of nanotubular surface structures by soft template electropolymerization
- Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane
- Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide
- Invited paper
- Gender gap in science in Africa: experience of African women in mathematics association
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Bioinspired and biobased chemistry & materials (N.I.C.E. 2020): onsite and online hybrid conference
- Conference papers
- Vapor bubble induced electric current generation
- Photochemistry of phthalocyanine based on spin angular momenta: a kinetic study of fluorescent probes for ascorbic acid
- Study of the influence of autoclave sterilization on the properties of citrate functionalized iron oxide nanoparticles
- What defines biomimetic and bioinspired science and engineering?
- Orthogonal chemistry in the design of rare-earth metal oxyhydrides
- Highly conjugated carbazole-based monomers for the control of nanotubular surface structures by soft template electropolymerization
- Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane
- Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide
- Invited paper
- Gender gap in science in Africa: experience of African women in mathematics association