Home What defines biomimetic and bioinspired science and engineering?
Article
Licensed
Unlicensed Requires Authentication

What defines biomimetic and bioinspired science and engineering?

  • Katarzyna Rybicka-Jasińska , James B. Derr and Valentine I. Vullev EMAIL logo
Published/Copyright: June 23, 2021

Abstract

Biomimicry, biomimesis and bioinspiration define distinctly different approaches for deepening the understanding of how living systems work and employing this knowledge to meet pressing demands in engineering. Biomimicry involves shear imitation of biological structures that most often do not reproduce the functionality that they have while in the living organisms. Biomimesis aims at reproduction of biological structure-function relationships and advances our knowledge of how different components of complex living systems work. Bioinspiration employs this knowledge in abiotic manners that are optimal for targeted applications. This article introduces and reviews these concepts in a global historic perspective. Representative examples from charge-transfer science and solar-energy engineering illustrate the evolution from biomimetic to bioinspired approaches and show their importance. Bioinspired molecular electrets, aiming at exploration of dipole effects on charge transfer, demonstrate the pintail impacts of biological inspiration that reach beyond its high utilitarian values. The abiotic character of bioinspiration opens doors for the emergence of unprecedented properties and phenomena, beyond what nature can offer.


Article note:

A collection of invited papers based on presentations at the 5th International Conference on Bioinspired and Biobased Chemistry and Materials & 2nd International Conference on Optics, Photonics, & Materials (NICE 2020) held in Nice, France and online, Oct. 12–14, 2020.



Corresponding author: Valentine I. Vullev, Department of Biochemistry, University of California, Riverside, CA, 92521, USA; Department of Bioengineering, University of California, Riverside, CA, 92521, USA; Department of Chemistry, University of California, Riverside, CA, 92521, USA; and Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA, e-mail:

Katarzyna Rybicka-Jasińska and James B. Derr contributed equally to this work.


Award Identifier / Grant number: 60651-ND4

Funding source: Division of Chemistry

Award Identifier / Grant number: CHE 1800602

  1. Research funding: The funding was provided by the USA National Science Foundation, grant CHE 1800602, and by the American Chemical Society, Petroleum Research Fund, grant 60651-ND4.

References

[1] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini. Energy Strateg. Rev. 24, 38 (2019), https://doi.org/10.1016/j.esr.2019.01.006.Search in Google Scholar

[2] P. A. Owusu, S. Asumadu-Sarkodie. Cogent Eng. 3, 1167990 (2016), https://doi.org/10.1080/23311916.2016.1167990.Search in Google Scholar

[3] A. Demirbas. Energy Sources Part A 28, 779 (2006), https://doi.org/10.1080/009083190927985.Search in Google Scholar

[4] A. Henderson-Sellers, M. F. Wilson. Phil. Trans. Roy. Soc. Lond. 309, 285 (1983).10.1098/rsta.1983.0042Search in Google Scholar

[5] A.-E. Becquerel. Compt. Rend. 9, 561 (1839).Search in Google Scholar

[6] V. Kumar, R. L. Shrivastava, S. P. Untawale. Aquat. Pr. 4, 473 (2015), https://doi.org/10.1016/j.aqpro.2015.02.062.Search in Google Scholar

[7] A. A. Lacis, G. A. Schmidt, D. Rind, R. A. Ruedy. Science 330, 356 (2010), https://doi.org/10.1126/science.1190653.Search in Google Scholar PubMed

[8] W. Steffen, K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers, S. Sörlin. Science 347 (2015), https://doi.org/10.1126/science.1259855.Search in Google Scholar PubMed

[9] A. Indermuhle, T. F. Stocker, F. Joos, H. Fischer, H. J. Smith, M. Wahlen, B. Deck, D. Mastroianni, J. Tschumi, T. Blunier, R. Meyer, B. Stauffer. Nature 398, 121 (1999), https://doi.org/10.1038/18158.Search in Google Scholar

[10] G. Ciamician. Science 36, 385 (1912), https://doi.org/10.1126/science.36.926.385.Search in Google Scholar PubMed

[11] V. I. Vullev, J. Phys. Chem. Lett. 2, 503 (2011), https://doi.org/10.1021/jz1016069.Search in Google Scholar

[12] S. Lev-Yadun. Plant Signal. Behav. 13 (2018), https://doi.org/10.1080/15592324.2018.1480846.Search in Google Scholar

[13] A. Nasto, M. Regli, P. T. Brun, J. Alvarado, C. Clanet, A. E. Hosoi. Phys. Rev. Fluids 1 (2016), https://doi.org/10.1103/physrevfluids.1.033905.Search in Google Scholar

[14] E. M. Espinoza, J. M. Larsen-Clinton, M. Krzeszewski, N. Darabedian, G. D. T, V. I. Vullev. Pure Appl. Chem. 89, 1777 (2017), https://doi.org/10.1515/pac-2017-0309.Search in Google Scholar

[15] K. Brubaker, A. Garewal, R. C. Steinhardt, A. P. Esser-Kahn. Nat. Commun. 9 (2018), https://doi.org/10.1038/s41467-018-03052-y.Search in Google Scholar

[16] V. I. Vullev, G. JonesII. Res. Chem. Intermed. 28, 795 (2002), https://doi.org/10.1163/15685670260469429.Search in Google Scholar

[17] D. E. Robertson, R. S. Farid, C. C. Moser, J. L. Urbauer, S. E. Mulholland, R. Pidikiti, J. D. Lear, A. J. Wand, W. F. DeGrado, P. L. Dutton. Nature 368, 425 (1994), https://doi.org/10.1038/368425a0.Search in Google Scholar

[18] C. T. Choma, J. D. Lear, M. J. Nelson, P. L. Dutton, D. E. Robertson, W. F. DeGrado. J. Am. Chem. Soc. 116, 856 (1994), https://doi.org/10.1021/ja00082a005.Search in Google Scholar

[19] G. JonesII, L. N. Lu, V. Vullev, D. Gosztola, S. Greenfield, M. Wasielewski. Bioorg. Med. Chem. Lett. 5, 2385 (1995), https://doi.org/10.1016/0960-894x(95)00416-q.Search in Google Scholar

[20] F. Rabanal, B. R. Gibney, W. F. DeGrado, C. C. Moser, P. L. Dutton. Inorg. Chim. Acta. 243, 213 (1996), https://doi.org/10.1016/0020-1693(95)04910-x.Search in Google Scholar

[21] E. Galoppini, M. A. Fox. J. Am. Chem. Soc. 118, 2299 (1996), https://doi.org/10.1021/ja951555a.Search in Google Scholar

[22] F. Rabanal, W. F. DeGrado, P. L. Dutton. J. Am. Chem. Soc. 118, 473 (1996), https://doi.org/10.1021/ja952831o.Search in Google Scholar

[23] M. W. Mutz, G. L. McLendon, J. F. Wishart, E. R. Gaillard, A. F. Corin. Proc. Natl. Acad. Sci. U.S.A. 93, 9521 (1996), https://doi.org/10.1073/pnas.93.18.9521.Search in Google Scholar

[24] G. V. Kozlov, M. Y. Ogawa. J. Am. Chem. Soc. 119, 8377 (1997), https://doi.org/10.1021/ja970814o.Search in Google Scholar

[25] M. A. Fox, E. Galoppini. J. Am. Chem. Soc. 119, 5277 (1997), https://doi.org/10.1021/ja963269k.Search in Google Scholar

[26] A. Knorr, E. Galoppini, M. A. Fox. J. Phys. Org. Chem. 10, 484 (1997), https://doi.org/10.1002/(sici)1099-1395(199707)10:7<484::aid-poc895>3.0.co;2-l.10.1002/(SICI)1099-1395(199707)10:7<484::AID-POC895>3.0.CO;2-LSearch in Google Scholar

[27] G. Jones, V. VullevII, E. H. Braswell, D. Zhu. J. Am. Chem. Soc. 122, 388 (2000), https://doi.org/10.1021/ja981936z.Search in Google Scholar

[28] A. Y. Kornilova, J. F. Wishart, W. Xiao, R. C. Lasey, A. Fedorova, Y.-K. Shin, M. Y. Ogawa. J. Am. Chem. Soc. 122, 7999 (2000), https://doi.org/10.1021/ja0006954.Search in Google Scholar

[29] G. Jones, V. I. VullevII. Org. Lett. 3, 2457 (2001), https://doi.org/10.1021/ol016123l.Search in Google Scholar

[30] G. Jones, V. I. VullevII. J. Phys. Chem. 105, 6402 (2001), https://doi.org/10.1021/jp010087q.Search in Google Scholar

[31] G. Jones, V. I. VullevII. Org. Lett. 4, 4001 (2002), https://doi.org/10.1021/ol026656+.10.1021/ol026656+Search in Google Scholar

[32] V. I. Vullev, G. Jones. Tetrahedron Lett. 43, 8611 (2002), https://doi.org/10.1016/s0040-4039(02)01895-6.Search in Google Scholar

[33] Y. Zheng, M. A. Case, J. F. Wishart, G. L. McLendon. J. Phys. Chem. B 107, 7288 (2003), https://doi.org/10.1021/jp027092u.Search in Google Scholar

[34] G. Jones, X. ZhouII, V. I. Vullev. Photochem. Photobiol. Sci. 2, 1080 (2003).10.1039/B306490ESearch in Google Scholar

[35] M. A. Case, G. L. McLendon. Accounts Chem. Res. 37, 754 (2004), https://doi.org/10.1021/ar960245+.10.1021/ar960245+Search in Google Scholar PubMed

[36] S. A. Serron, W. S. Aldridge, C. N. Fleming, R. M. Danell, M. H. Baik, M. Sykora, D. M. Dattelbaum, T. J. Meyer. J. Am. Chem. Soc. 126, 14506 (2004), https://doi.org/10.1021/ja030659f.Search in Google Scholar PubMed

[37] M. H. V. Huynh, D. M. Dattelbaum, T. J. Meyer. Coord. Chem. Rev. 249, 457 (2005), https://doi.org/10.1016/j.ccr.2004.07.005.Search in Google Scholar

[38] Y. Chen, J. Viereck, R. Harmer, S. Rangan, R. A. Bartynski, E. Galoppini. J. Am. Chem. Soc. 142, 3489 (2020), https://doi.org/10.1021/jacs.9b12001.Search in Google Scholar PubMed

[39] G. Ghirlanda, A. Osyczka, W. Liu, M. Antolovich, K. M. Smith, P. L. Dutton, A. J. Wand, W. F. DeGrado. J. Am. Chem. Soc. 126, 8141 (2004), https://doi.org/10.1021/ja039935g.Search in Google Scholar PubMed

[40] L. Cristian, P. Piotrowiak, R. S. Farid. J. Am. Chem. Soc. 125, 11814 (2003), https://doi.org/10.1021/ja0292142.Search in Google Scholar PubMed

[41] R. OrS owski, J. A. Clark, J. B. Derr, E. M. Espinoza, M. F. Mayther, O. Staszewska-Krajewska, J. R. Winkler, H. Ja drzejewska, A. Szumna, H. B. Gray, V. I. Vullev, D. T. Gryko. Proc. Natl. Acad. Sci. U. S. A. 118, e2026462118 (2021).10.1073/pnas.2026462118Search in Google Scholar PubMed PubMed Central

[42] G. Steinberg-Yfrach, P. A. Liddell, S.-C. Hung, A. L. Moore, D. Gust, T. A. Moore. Nature 385, 239 (1997), https://doi.org/10.1038/385239a0.Search in Google Scholar

[43] G. Steinberg-Yfrach, J.-L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust, T. A. Moore. Nature 392, 479 (1998), https://doi.org/10.1038/33116.Search in Google Scholar PubMed

[44] I. M. Bennett, H. M. V. Farfano, F. Bogani, A. Primak, P. A. Liddell, L. Otero, L. Sereno, J. J. Silber, A. L. Moore, T. A. Moore, D. Gust. Nature 420, 398 (2002), https://doi.org/10.1038/nature01209.Search in Google Scholar PubMed

[45] P. Kurz. in Solar Energy for Fuels, H. Tüysüz, C. K. Chan (Eds.), p. 49, Springer International Publishing, Cham (2016).Search in Google Scholar

[46] K. S. Joya, H. J. M. de Groot. Int. J. Hydrogen Energy 37, 8787 (2012), https://doi.org/10.1016/j.ijhydene.2012.01.139.Search in Google Scholar

[47] J. S. Kanady, E. Y. Tsui, M. W. Day, T. Agapie. Science 333, 733 (2011), https://doi.org/10.1126/science.1206036.Search in Google Scholar PubMed

[48] J. Limburg, J. S. Vrettos, H. Y. Chen, J. C. de Paula, R. H. Crabtree, G. W. Brudvig. J. Am. Chem. Soc. 123, 423 (2001), https://doi.org/10.1021/ja001090a.Search in Google Scholar PubMed

[49] J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig. Science 283, 1524 (1999).10.1126/science.283.5407.1524Search in Google Scholar PubMed

[50] Z. B. Geng, Y. Sun, Y. Zhang, Y. X. Wang, L. P. Li, K. K. Huang, X. Y. Wang, J. H. Liu, L. Yuan, S. H. Feng. ACS Appl. Mater. Interfaces 10, 37948 (2018), https://doi.org/10.1021/acsami.8b11041.Search in Google Scholar PubMed

[51] S. W. Gersten, G. J. Samuels, T. J. Meyer. J. Am. Chem. Soc. 104, 4029 (1982), https://doi.org/10.1021/ja00378a053.Search in Google Scholar

[52] J. A. Gilbert, D. S. Eggleston, W. R. Murphy, D. A. Geselowitz, S. W. Gersten, D. J. Hodgson, T. J. Meyer. J. Am. Chem. Soc. 107, 3855 (1985), https://doi.org/10.1021/ja00299a017.Search in Google Scholar

[53] J. K. Hurst, J. Z. Zhou, Y. B. Lei. Inorg. Chem. 31, 1010 (1992), https://doi.org/10.1021/ic00032a017.Search in Google Scholar

[54] C. W. Chronister, R. A. Binstead, J. F. Ni, T. J. Meyer. Inorg. Chem. 36, 3814 (1997), https://doi.org/10.1021/ic970393b.Search in Google Scholar

[55] F. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton, T. J. Meyer. Inorg. Chem. 47, 1727 (2008), https://doi.org/10.1021/ic701249s.Search in Google Scholar PubMed

[56] E. L. Lebeau, S. A. Adeyemi, T. J. Meyer. Inorg. Chem. 37, 6476 (1998), https://doi.org/10.1021/ic970908z.Search in Google Scholar PubMed

[57] C. Sens, I. Romero, M. Rodriguez, A. Llobet, T. Parella, J. Benet-Buchholz. J. Am. Chem. Soc. 126, 7798 (2004), https://doi.org/10.1021/ja0486824.Search in Google Scholar PubMed

[58] R. Zong, R. P. Thummel. J. Am. Chem. Soc. 127, 12802 (2005), https://doi.org/10.1021/ja054791m.Search in Google Scholar PubMed

[59] N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard. J. Am. Chem. Soc. 130, 210 (2008), https://doi.org/10.1021/ja074478f.Search in Google Scholar PubMed

[60] J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree. J. Am. Chem. Soc. 131, 8730 (2009), https://doi.org/10.1021/ja901270f.Search in Google Scholar PubMed PubMed Central

[61] J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree. J. Am. Chem. Soc. 132, 16017 (2010), https://doi.org/10.1021/ja104775j.Search in Google Scholar PubMed

[62] D. Mersch, C. Y. Lee, J. Z. Zhang, K. Brinkert, J. C. Fontecilla-Camps, A. W. Rutherford, E. Reisner. J. Am. Chem. Soc. 137, 8541 (2015), https://doi.org/10.1021/jacs.5b03737.Search in Google Scholar PubMed

[63] L. M. Utschig, S. C. Silver, K. L. Mulfort, D. M. Tiede. J. Am. Chem. Soc. 133, 16334 (2011), https://doi.org/10.1021/ja206012r.Search in Google Scholar PubMed

[64] L. M. Utschig, S. R. Soltau, D. M. Tiede. Curr. Opin. Chem. Biol. 25, 1 (2015), https://doi.org/10.1016/j.cbpa.2014.11.019.Search in Google Scholar PubMed

[65] T. R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero. Coord. Chem. Rev. 270, 127 (2014), https://doi.org/10.1016/j.ccr.2013.12.018.Search in Google Scholar

[66] D. Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pecaut, S. Demeshko, F. Meyer, M. Orio, V. Artero, C. Duboc. Nat. Chem. 8, 1054 (2016), https://doi.org/10.1038/nchem.2575.Search in Google Scholar PubMed PubMed Central

[67] M. A. Gross, A. Reynal, J. R. Durrant, E. Reisner. J. Am. Chem. Soc. 136, 356 (2014), https://doi.org/10.1021/ja410592d.Search in Google Scholar PubMed PubMed Central

[68] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Norskov. J. Am. Chem. Soc. 127, 5308 (2005), https://doi.org/10.1021/ja0504690.Search in Google Scholar PubMed

[69] S. Fukuzumi. Eur. J. Inorg. Chem. 2008, 1351 (2008), https://doi.org/10.1002/ejic.200701369.Search in Google Scholar

[70] L. M. Utschig, N. M. Dimitrijevic, O. G. Poluektov, S. D. Chemerisov, K. L. Mulfort, D. M. Tiede. J. Phys. Chem. Lett. 2, 236 (2011), https://doi.org/10.1021/jz101728v.Search in Google Scholar

[71] N. P. Nguyen, B. L. Wadsworth, D. Nishiori, E. A. Reyes Cruz, G. F. Moore. J. Phys. Chem. Lett. 12, 199 (2021), https://doi.org/10.1021/acs.jpclett.0c02386.Search in Google Scholar PubMed

[72] B. L. Wadsworth, D. Khusnutdinova, J. M. Urbine, A. S. Reyes, G. F. Moore. ACS Appl. Mater. Interfaces 12, 3903 (2020), https://doi.org/10.1021/acsami.9b15286.Search in Google Scholar PubMed

[73] B. L. Wadsworth, A. M. Beiler, D. Khusnutdinova, E. A. Reyes Cruz, G. F. Moore. J. Am. Chem. Soc. 141, 15932 (2019), https://doi.org/10.1021/jacs.9b07295.Search in Google Scholar

[74] D. Khusnutdinova, B. L. Wadsworth, M. Flores, A. M. Beiler, E. A. Reyes Cruz, Y. Zenkov, G. F. Moore. ACS Catal. 8, 9888 (2018), https://doi.org/10.1021/acscatal.8b01776.Search in Google Scholar

[75] A. M. Beiler, D. Khusnutdinova, B. L. Wadsworth, G. F. Moore. Inorg. Chem. 56, 12178 (2017), https://doi.org/10.1021/acs.inorgchem.7b01509.Search in Google Scholar

[76] S. N. Karthick, K. V. Hemalatha, K. B. Suresh, F. Manik Clinton, S. Akshaya, H.-J. Kim. Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells, John Wiley & Sons, Inc, Hoboken, NJ, p. 1 (2020).10.1002/9781119557401.ch1Search in Google Scholar

[77] H. Tributsch. Photochem. Photobiol. 16, 261 (1972).10.1111/j.1751-1097.1972.tb06297.xSearch in Google Scholar

[78] K. Hauffe, N. I. Ionescu, A. Meyer-Laack. Naturwissenschaften 59, 165 (1972), https://doi.org/10.1007/bf00637356.Search in Google Scholar

[79] L. L. Larina, E. M. Trukhan. Zh. Fiz. Khim. 53, 1744 (1979).Search in Google Scholar

[80] S. Hotchandani, P. V. Kamat. Chem. Phys. Lett. 191, 320 (1992), https://doi.org/10.1016/0009-2614(92)85308-w.Search in Google Scholar

[81] B. O’Regan, M. Grätzel. Nature 353, 737 (1991), https://doi.org/10.1038/353737a0.Search in Google Scholar

[82] G. J. Meyer. ACS Nano 4, 4337 (2010), https://doi.org/10.1021/nn101591h.Search in Google Scholar PubMed

[83] K. Sharma, V. Sharma, S. S. Sharma. Nanoscale Res. Lett. 13 (2018), https://doi.org/10.1186/s11671-018-2760-6.Search in Google Scholar PubMed PubMed Central

[84] B. C. O’Regan, J. R. Durrant. Acc. Chem. Res. 42, 1799 (2009).10.1021/ar900145zSearch in Google Scholar PubMed

[85] W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Gratzel, D. L. Officer. J. Phys. Chem. C 111, 11760 (2007), https://doi.org/10.1021/jp0750598.Search in Google Scholar

[86] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel. Science 334, 629 (2011), https://doi.org/10.1126/science.1209688.Search in Google Scholar PubMed

[87] Y. C. Chang, C. L. Wang, T. Y. Pan, S. H. Hong, C. M. Lan, H. H. Kuo, C. F. Lo, H. Y. Hsu, C. Y. Lin, E. W. G. Diau. Chem. Commun. 47, 8910 (2011), https://doi.org/10.1039/c1cc12764k.Search in Google Scholar PubMed

[88] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel. Nat. Chem. 6, 242 (2014), https://doi.org/10.1038/nchem.1861.Search in Google Scholar PubMed

[89] K. Hu, R. N. Sampaio, J. Schneider, L. Troian-Gautier, G. J. Meyer. J. Am. Chem. Soc. 142, 16099 (2020), https://doi.org/10.1021/jacs.0c04886.Search in Google Scholar PubMed

[90] S. N. Yun, N. Vlachopoulos, A. Qurashi, S. Ahmad, A. Hagfeldt. Chem. Soc. Rev. 48, 3705 (2019), https://doi.org/10.1039/c8cs00987b.Search in Google Scholar PubMed

[91] Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hu, Z. a. Tan. Sustain. Energy Fuels 4, 4415 (2020), https://doi.org/10.1039/d0se00621a.Search in Google Scholar

[92] S. M. McCullough, J. M. Evans, T. Moot, A. D. Taggart, L. Troian-Gautier, J. F. Cahoon. ACS Appl. Energy Mater. 3, 1496 (2020), https://doi.org/10.1021/acsaem.9b01955.Search in Google Scholar

[93] M. Bonomo, D. Di Girolamo, M. Piccinni, D. P. Dowling, D. Dini. Nanomaterials 10, 167 (2020), https://doi.org/10.3390/nano10010167.Search in Google Scholar PubMed PubMed Central

[94] Y. M. Poronik, G. V. Baryshnikov, I. Deperasińska, E. M. Espinoza, H. Ågren, D. T. Gryko, V. I. Vullev. Commun. Chem. 3, 190 (2020), https://doi.org/10.1038/s42004-020-00434-6.Search in Google Scholar

[95] A. Pecoraro, A. De Maria, P. Delli Veneri, M. Pavone, A. B. Munoz-Garcia. Phys. Chem. Chem. Phys. 22, 28401 (2020), https://doi.org/10.1039/d0cp05328g.Search in Google Scholar PubMed

[96] D. Ursu, M. Vajda, M. Miclau. J. Alloys Compd. 802, 86 (2019), https://doi.org/10.1016/j.jallcom.2019.06.180.Search in Google Scholar

[97] A. Sen, A. Gross. ACS Appl. Energy Mater. 2, 6341 (2019), https://doi.org/10.1021/acsaem.9b00973.Search in Google Scholar

[98] T. Bouwens, S. Mathew, J. N. H. Reek. Faraday Discuss 215, 393 (2019), https://doi.org/10.1039/c8fd00169c.Search in Google Scholar PubMed

[99] N. Zhang, J. Sun, H. Gong. Coatings 9, 137/1 (2019), https://doi.org/10.3390/coatings9020137.Search in Google Scholar

[100] J. Lu, Z. Liu, N. Pai, L. Jiang, U. Bach, A. N. Simonov, Y.-B. Cheng, L. Spiccia. ChemPlusChem 83, 711 (2018), https://doi.org/10.1002/cplu.201800104.Search in Google Scholar PubMed

[101] O. Langmar, C. R. Ganivet, P. Schol, T. Scharl, G. de la Torre, T. Torres, R. D. Costa, D. M. Guldi. J. Mater. Chem. C 6, 5176 (2018), https://doi.org/10.1039/c8tc00769a.Search in Google Scholar

[102] T. T. T. Pham, S. K. Saha, D. Provost, Y. Farre, M. Raissi, Y. Pellegrin, E. Blart, S. Vedraine, B. Ratier, D. Aldakov, F. Odobel, J. Boucle. J. Phys. Chem. C 121, 129 (2017), https://doi.org/10.1021/acs.jpcc.6b10513.Search in Google Scholar

[103] E. M. Espinoza, B. Xia, N. Darabedian, J. M. Larsen, V. Nunez, D. Bao, J. T. Mac, F. Botero, M. Wurch, F. Zhou, V. I. Vullev. Eur. J. Org. Chem. 2016, 343 (2016), https://doi.org/10.1002/ejoc.201501339.Search in Google Scholar

[104] Z. W. Wang, P. K. Nayak, J. A. Caraveo-Frescas, H. N. Alshareef. Adv. Mater. 28, 3831 (2016), https://doi.org/10.1002/adma.201503080.Search in Google Scholar PubMed

[105] M. K. Brennaman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares, D. L. Ashford, R. L. House, G. J. Meyer, J. M. Papanikolas, T. J. Meyer. J. Am. Chem. Soc. 138, 13085 (2016), https://doi.org/10.1021/jacs.6b06466.Search in Google Scholar PubMed

[106] O. Langmar, E. Fazio, P. Schol, G. de la Torre, R. D. Costa, T. Torres, D. M. Guldi. Angew. Chem. Int. Ed. 58, 4056 (2019), https://doi.org/10.1002/anie.201812397.Search in Google Scholar PubMed

[107] K. A. Click, B. M. Schockman, J. T. Dilenschneider, W. D. McCulloch, B. R. Garrett, Y. Yu, M. He, A. E. Curtze, Y. Wu. J. Phys. Chem. C 121, 8787 (2017), https://doi.org/10.1021/acs.jpcc.7b01911.Search in Google Scholar

[108] Y.-Z. Zheng, X. Tao, J.-W. Zhang, X.-S. Lai, N. Li. J. Power Sources 376, 26 (2018), https://doi.org/10.1016/j.jpowsour.2017.11.072.Search in Google Scholar

[109] W. Shockley, H. J. Queisser. J. Appl. Phys. 32, 510 (1961), https://doi.org/10.1063/1.1736034.Search in Google Scholar

[110] S. Guo, D. Bao, S. Upadhyayula, W. Wang, A. B. Guvenc, J. R. Kyle, H. Hosseinibay, K. N. Bozhilov, V. I. Vullev, C. S. Ozkan, M. Ozkan. Adv. Funct. Mater. 23, 5199 (2013), https://doi.org/10.1002/adfm.201203652.Search in Google Scholar

[111] H. Lu, D. Bao, M. Penchev, M. Ghazinejad, V. I. Vullev, C. S. Ozkan, M. Ozkan. Adv. Sci. Lett. 3, 101 (2010), https://doi.org/10.1166/asl.2010.1110.Search in Google Scholar

[112] D. Rehm, A. Weller. Isr. J. Chem. 8, 259 (1970), https://doi.org/10.1002/ijch.197000029.Search in Google Scholar

[113] D. Bao, B. Millare, W. Xia, B. G. Steyer, A. A. Gerasimenko, A. Ferreira, A. Contreras, V. I. Vullev. J. Phys. Chem. 113, 1259 (2009), https://doi.org/10.1021/jp809105f.Search in Google Scholar PubMed

[114] J. B. Derr, J. Tamayo, J. A. Clark, M. Morales, M. F. Mayther, E. M. Espinoza, K. Rybicka-Jasinska, V. I. Vullev. Phys. Chem. Chem. Phys. 22, 21583 (2020), https://doi.org/10.1039/d0cp01556c.Search in Google Scholar PubMed PubMed Central

[115] J. Wan, A. Ferreira, W. Xia, C. H. Chow, K. Takechi, P. V. Kamat, G. Jones, V. I. Vullev. J. Photochem. Photobiol., A 197, 364 (2008), https://doi.org/10.1016/j.jphotochem.2008.01.016.Search in Google Scholar

[116] D. Bao, S. Ramu, A. Contreras, S. Upadhyayula, J. M. Vasquez, G. Beran, V. I. Vullev. J. Phys. Chem. B 114, 14467 (2010), https://doi.org/10.1021/jp101730e.Search in Google Scholar PubMed

[117] R. A. Marcus. J. Chem. Phys. 24, 966 (1956), https://doi.org/10.1063/1.1742723.Search in Google Scholar

[118] R. A. Marcus. J. Chem. Phys. 26, 867 (1957), https://doi.org/10.1063/1.1743423.Search in Google Scholar

[119] R. A. Marcus. J. Chem. Phys. 26, 872 (1957).10.1063/1.1743424Search in Google Scholar

[120] D. Meggiolaro, F. Ambrosio, E. Mosconi, A. Mahata, F. De Angelis. Adv. Energy Mater. 10, 1902748 (2020), https://doi.org/10.1002/aenm.201902748.Search in Google Scholar

[121] Y. Natanzon, A. Azulay, Y. Amouyal. Isr. J. Chem. 60, 768 (2020), https://doi.org/10.1002/ijch.201900101.Search in Google Scholar

[122] M. Scheele. Z. Phys. Chem. 229, 167 (2015), https://doi.org/10.1515/zpch-2014-0587.Search in Google Scholar

[123] I. G. Austin, N. F. Mott. Adv. Phys. 18, 41 (1969), https://doi.org/10.1080/00018736900101267.Search in Google Scholar

[124] L. Landau. Phys. Z. Sowjet Union 3, 664 (1933).Search in Google Scholar

[125] S. I. Pekar. Исследования по электронной теории кристаллов (Studies on the Electron Theory of Crystals). Gosudarstvennoe Izdatel’stvo Tekh.-Teoret. Lit, Oak Ridge, TN (1951).Search in Google Scholar

[126] S. Upadhyayula, D. Bao, B. Millare, S. S. Sylvia, K. M. M. Habib, K. Ashraf, A. Ferreira, S. Bishop, R. Bonderer, S. Baqai, X. Jing, M. Penchev, M. Ozkan, C. S. Ozkan, R. K. Lake, V. I. Vullev. J. Phys. Chem. B 115, 9473 (2011), https://doi.org/10.1021/jp2045383.Search in Google Scholar PubMed

[127] G. N. Chuev, V. D. Lakhno. J. Theor. Biol. 163, 51 (1993), https://doi.org/10.1006/jtbi.1993.1106.Search in Google Scholar PubMed

[128] H. G. Ryu, M. F. Mayther, J. Tamayo, C. Azarias, E. M. Espinoza, M. Banasiewicz, L. G. Lukasiewicz, Y. M. Poronik, A. Jezewski, J. Clark, J. B. Derr, K. H. Ahn, D. T. Gryko, D. Jacquemin, V. I. Vullev. J. Phys. Chem. C 122, 13424 (2018), https://doi.org/10.1021/acs.jpcc.7b11194.Search in Google Scholar

[129] A. Purc, E. M. Espinoza, R. Nazir, J. J. Romero, K. Skonieczny, A. Jeżewski, J. M. Larsen, D. T. Gryko, V. I. Vullev. J. Am. Chem. Soc. 138, 12826 (2016), https://doi.org/10.1021/jacs.6b04974.Search in Google Scholar PubMed

[130] S. Upadhyayula, V. Nunez, E. M. Espinoza, J. M. Larsen, D. Bao, D. Shi, J. T. Mac, B. Anvari, V. I. Vullev. Chem. Sci. 6, 2237 (2015), https://doi.org/10.1039/c4sc02881c.Search in Google Scholar PubMed PubMed Central

[131] J. M. Vasquez, A. Vu, J. S. Schultz, V. I. Vullev. Biotechnol. Prog. 25, 906 (2009), https://doi.org/10.1002/btpr.188.Search in Google Scholar PubMed

[132] F. J. Ambrose, D. James. Proc. Roy. Soc. Lond. 61, 316 (1897).10.1098/rspl.1897.0043Search in Google Scholar

[133] G. Jones, D.-X. YanII, D. J. Gosztola, S. R. Greenfield, M. R. Wasielewski. J. Am. Chem. Soc. 121, 11016 (1999), https://doi.org/10.1021/ja9927319.Search in Google Scholar

[134] J. Hu, B. Xia, D. Bao, A. Ferreira, J. Wan, G. Jones, V. I. Vullev. J. Phys. Chem. 113, 3096 (2009), https://doi.org/10.1021/jp810909v.Search in Google Scholar PubMed

[135] G. Jones, D. YanII, J. Hu, J. Wan, B. Xia, V. I. Vullev. J. Phys. Chem. B 111, 6921 (2007), https://doi.org/10.1021/jp072224a.Search in Google Scholar PubMed

[136] S. J. Mora, E. Odella, G. F. Moore, D. Gust, T. A. Moore, A. L. Moore. Acc. Chem. Res. 51, 445 (2018), https://doi.org/10.1021/acs.accounts.7b00491.Search in Google Scholar PubMed

[137] S. Hammes-Schiffer. Energy Environ. Sci. 5, 7696 (2012), https://doi.org/10.1039/c2ee03361e.Search in Google Scholar

[138] S. Hammes-Schiffer. Acc. Chem. Res. 42, 1881 (2009), https://doi.org/10.1021/ar9001284.Search in Google Scholar PubMed PubMed Central

[139] J. D. Megiatto, D. D. Mendez-Hernandez, M. E. Tejeda-Ferrari, A. L. Teillout, M. J. Llansola-Portoles, G. Kodis, O. G. Poluektov, T. Rajh, V. Mujica, T. L. Groy, D. Gust, T. A. Moore, A. L. Moore. Nat. Chem. 6, 423 (2014).10.1038/nchem.1862Search in Google Scholar PubMed

[140] A. Pannwitz, O. S. Wenger. Dalton Trans. 48, 5861 (2019), https://doi.org/10.1039/c8dt04373f.Search in Google Scholar PubMed

[141] E. Odella, B. L. Wadsworth, S. J. Mora, J. J. Goings, M. T. Huynh, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore. J. Am. Chem. Soc. 141, 14057 (2019), https://doi.org/10.1021/jacs.9b06978.Search in Google Scholar PubMed

[142] W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore. J. Am. Chem. Soc. 142, 21842 (2020), https://doi.org/10.1021/jacs.0c10474.Search in Google Scholar PubMed

[143] Y. Yoneda, S. J. Mora, J. Shee, B. L. Wadsworth, E. A. Arsenault, D. Hait, G. Kodis, D. Gust, G. F. Moore, A. L. Moore, M. Head-Gordon, T. A. Moore, G. R. Fleming. J. Am. Chem. Soc. 143, 3104 (2021), https://doi.org/10.1021/jacs.0c10626.Search in Google Scholar PubMed

[144] M. Krzeszewski, E. M. Espinoza, C. Cervinka, J. B. Derr, J. A. Clark, D. Borchardt, G. J. O. Beran, D. T. Gryko, V. I. Vullev. Angew. Chem. Int. Ed. 57, 12365 (2018), https://doi.org/10.1002/anie.201802637.Search in Google Scholar PubMed

[145] D. Bao, S. Upadhyayula, J. M. Larsen, B. Xia, B. Georgieva, V. Nunez, E. M. Espinoza, J. D. Hartman, M. Wurch, A. Chang, C.-K. Lin, J. Larkin, K. Vasquez, G. J. O. Beran, V. I. Vullev. J. Am. Chem. Soc. 136, 12966 (2014), https://doi.org/10.1021/ja505618n.Search in Google Scholar PubMed

[146] R. A. Marcus. Discuss. Faraday Soc. 21 (1960).10.1039/DF9602900021Search in Google Scholar

[147] S. Yomosa. Sup. Prog. Theor. Phys. 40, 249 (1967), https://doi.org/10.1143/ptps.40.249.Search in Google Scholar

[148] J. B. Derr, J. Tamayo, E. M. Espinoza, J. A. Clark, V. I. Vullev. Can. J. Chem. 96, 843 (2018), https://doi.org/10.1139/cjc-2017-0389.Search in Google Scholar

[149] D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, R. MacKinnon. Science 280, 69 (1998), https://doi.org/10.1126/science.280.5360.69.Search in Google Scholar PubMed

[150] R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. MacKinnon. Nature 415, 287 (2002), https://doi.org/10.1038/415287a.Search in Google Scholar PubMed

[151] Y.-G. K. Shin, M. D. Newton, S. S. Isied. J. Am. Chem. Soc. 125, 3722 (2003), https://doi.org/10.1021/ja020358q.Search in Google Scholar PubMed

[152] J. S. Richardson, D. C. Richardson. in Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman (Ed.), p. 1, Plenum, New York, NY (1989).10.1007/978-1-4613-1571-1_1Search in Google Scholar

[153] L. Zubcevic, S.-Y. Lee. Curr. Opin. Struct. Biol. 58, 314 (2019), https://doi.org/10.1016/j.sbi.2019.06.011.Search in Google Scholar PubMed PubMed Central

[154] J. Ludwiczak, A. Winski, A. M. da Silva Neto, K. Szczepaniak, V. Alva, S. Dunin-Horkawicz. Sci. Rep. 9, 1 (2019), https://doi.org/10.1038/s41598-019-43189-4.Search in Google Scholar PubMed PubMed Central

[155] P. Kumar, M. Bansal. FEBS J. 282, 4415 (2015), https://doi.org/10.1111/febs.13507.Search in Google Scholar PubMed

[156] B. Xia, D. Bao, S. Upadhyayula, G. Jones, V. I. Vullev. J. Org. Chem. 78, 1994 (2013), https://doi.org/10.1021/jo301942g.Search in Google Scholar PubMed

[157] M. K. Ashraf, R. R. Pandey, R. K. Lake, B. Millare, A. A. Gerasimenko, D. Bao, V. I. Vullev. Biotechnol. Prog. 25, 915 (2009), https://doi.org/10.1002/btpr.189.Search in Google Scholar PubMed

[158] K. Rybicka-Jasinska, V. I. Vullev. J. Photochem. Photobiol., A 401, 112779 (2020).10.1016/j.jphotochem.2020.112779Search in Google Scholar

[159] K. Skonieczny, E. M. Espinoza, J. B. Derr, M. Morales, J. M. Clinton, B. Xia, V. I. Vullev. Pure Appl. Chem. 92, 275 (2020), https://doi.org/10.1515/pac-2019-0111.Search in Google Scholar

[160] J. B. Derr, K. Rybicka-Jasińska, E. M. Espinoza, M. Morales, M. K. Billones, J. A. Clark, V. I. Vullev. Biomolecules 11, 429 (2021), https://doi.org/10.3390/biom11030429.Search in Google Scholar PubMed PubMed Central

[161] J. M. Larsen, E. M. Espinoza, J. D. Hartman, C.-K. Lin, M. Wurch, P. Maheshwari, R. K. Kaushal, M. J. Marsella, G. J. O. Beran, V. I. Vullev. Pure Appl. Chem. 87, 779 (2015), https://doi.org/10.1515/pac-2015-0109.Search in Google Scholar

[162] E. M. Espinoza, J. M. Larsen, V. I. Vullev, J. Phys. Chem. Lett. 7, 758 (2016), https://doi.org/10.1021/acs.jpclett.5b02881.Search in Google Scholar PubMed

[163] J. M. Larsen-Clinton, E. M. Espinoza, M. F. Mayther, J. Clark, C. Tao, D. Bao, C. M. Larino, M. Wurch, S. Lara, V. I. Vullev. Phys. Chem. Chem. Phys. 19, 7871 (2017), https://doi.org/10.1039/c7cp00432j.Search in Google Scholar PubMed

[164] J. M. Larsen, E. M. Espinoza, V. I. Vullev. J. Photon. Energy 5, 1, 055598 (2015), https://doi.org/10.1117/1.jpe.5.055598.Search in Google Scholar

[165] E. M. Espinoza, J. M. Larsen, V. I. Vullev. ECS Trans. 66, 1 (2015), https://doi.org/10.1149/06623.0001ecst.Search in Google Scholar

[166] E. M. Espinoza, V. I. Vullev. ECS Trans. 77, 1517 (2017), https://doi.org/10.1149/07711.1517ecst.Search in Google Scholar

[167] E. M. Espinoza, J. A. Clark, J. Soliman, J. B. Derr, M. Morales, V. I. Vullev. J. Electrochem. Soc. 166, H3175 (2019), https://doi.org/10.1149/2.0241905jes.Search in Google Scholar

[168] J. B. Derr, J. A. Clark, M. Morales, E. M. Espinoza, S. Vadhin, V. I. Vullev. RSC Adv. 10, 24419 (2020), https://doi.org/10.1039/d0ra04465b.Search in Google Scholar PubMed PubMed Central

Published Online: 2021-06-23
Published in Print: 2021-11-25

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0323/html?lang=en&srsltid=AfmBOorp9yYKHKX7QJnMZOaH16rTFxFPOoBFVWUCBEVJLtKL3JQujfM_
Scroll to top button