Home Water uptake as a fuel for soft actuators from cellulose
Article
Licensed
Unlicensed Requires Authentication

Water uptake as a fuel for soft actuators from cellulose

  • Lisa Lopes da Costa and Ana Villares ORCID logo EMAIL logo
Published/Copyright: November 17, 2023
Become an author with De Gruyter Brill

Abstract

Water plays an important role in the properties of cellulose. In materials design, the water uptake of cellulose has been traditionally seen as a drawback, since water reduces mechanical resistance of paper and cardboard, and at high hydration, cellulose-based products are disintegrated. However, recently, the hydration of cellulose has been considered as an advantage to design water-responsive soft actuators. In Nature, water is the fuel for several plant functions that involve motion, such as the seed release or the plant protection from high temperature and radiation. Inspired by these natural systems, cellulose-based actuators have been designed to display different movements (bending, twisting, curling) in response to water. Biopolymer structuration inducing anisotropy within the system allows the asymmetric expansion of layers, which results in macroscopic movement. This review gives an overview of the soft actuators triggered by the hydration/dehydration processes of cellulose. We present representative examples of water-triggered natural actuators, which have inspired researchers to design anisotropic cellulose-based materials that develop controlled movement in response to water.


Corresponding author: Ana Villares, UR1268 BIA, INRAE, F-44316, Nantes, France, E-mail:

Funding source: Conseil Régional du Pays de la Loire

Acknowledgments

The authors gratefully thank the financial support of Conseil Régional des Pays de la Loire and Transform Division from the French National Research Institute for Agriculture, Food and Environment.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization, A.V.; funding acquisition, A.V.; writing-original draft, A.V.; writing-review and editing, L.L.C.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: Conseil Régional des Pays de la Loire and Transform Division from the French National Research Institute for Agriculture, Food and Environment.

  5. Data availability: Not applicable.

References

Abraham, Y., Tamburu, C., Klein, E., Dunlop, J.W.C., Fratzl, P., Raviv, U., and Elbaum, R. (2012). Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface. 9: 640–647, https://doi.org/10.1098/rsif.2011.0395.Search in Google Scholar PubMed PubMed Central

Armon, S., Efrati, E., Kupferman, R., and Sharon, E. (2011). Geometry and mechanics in the opening of chiral seed pods. Science 333: 1726–1730, https://doi.org/10.1126/science.1203874.Search in Google Scholar PubMed

Benítez, A.J., Torres-Rendon, J., Poutanen, M., and Walther, A. (2013). Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14: 4497–4506, https://doi.org/10.1021/bm401451m.Search in Google Scholar PubMed

Benselfelt, T., Rothemund, P., and Lee, P.S. (2023). Ultrafast, high-strain, and strong uniaxial hydrogel actuators from recyclable nanofibril networks. Adv. Mater. 35: 1–10, https://doi.org/10.1002/adma.202300487.Search in Google Scholar PubMed

Berglund, L.A. and Burgert, I. (2018). Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30: 1–15, https://doi.org/10.1002/adma.201704285.Search in Google Scholar PubMed

Bettotti, P., Maestri, C.A., Guider, R., Mancini, I., Nativ-Roth, E., Golan, Y., and Scarpa, M. (2016). Dynamics of hydration of nanocellulose films. Adv. Mater. Interfaces 3: 1–7, https://doi.org/10.1002/admi.201500415.Search in Google Scholar

Burgert, I. and Fratzl, P. (2009). Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. A Math. Phys. Eng. Sci. 367: 1541–1557, https://doi.org/10.1098/rsta.2009.0003.Search in Google Scholar PubMed

Chami Khazraji, A. and Robert, S. (2013). Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling. J. Nanomater. 2013: 409676.10.1155/2013/409676Search in Google Scholar

Chemin, M., Beaumal, B., Cathala, B., and Villares, A. (2020). pH-responsive properties of asymmetric nanopapers of nanofibrillated cellulose. Nanomaterials 10: 1380, https://doi.org/10.3390/nano10071380.Search in Google Scholar PubMed PubMed Central

Chen, M., Coasne, B., Guyer, R., Derome, D., and Carmeliet, J. (2018). Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nat. Commun. 9: 3507, https://doi.org/10.1038/s41467-018-05897-9.Search in Google Scholar PubMed PubMed Central

Chen, W., Sun, B., Biehl, P., and Zhang, K. (2022). Cellulose-based soft actuators. Macromol. Mater. Eng. 307: 2200072, https://doi.org/10.1002/mame.202200072.Search in Google Scholar

Dawson, J., Vincent, J.F.V., and Rocca, A.M. (1997). How pine cones open. Nature 390: 668, https://doi.org/10.1038/37745.Search in Google Scholar

De France, K.J., Hoare, T., and Cranston, E.D. (2017). Review of hydrogels and aerogels containing nanocellulose. Chem. Mat. 29: 4609–4631, https://doi.org/10.1021/acs.chemmater.7b00531.Search in Google Scholar

Deng, Y.Q., Xi, J.F., Meng, L.C., Lou, Y.L., Seidi, F., Wu, W.B., and Xiao, H.N. (2022). Stimuli-responsive nanocellulose hydrogels: an overview. Eur. Polym. J. 180: 111591, https://doi.org/10.1016/j.eurpolymj.2022.111591.Search in Google Scholar

Dicker, M.P., Rossiter, J.M., Bond, I.P., and Weaver, P.M. (2014). Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants. Bioinspiration Biomimetics 9: 036015, https://doi.org/10.1088/1748-3182/9/3/036015.Search in Google Scholar PubMed

Duan, J.J., Liang, X.C., Zhu, K.K., Guo, J.H., and Zhang, L.N. (2017). Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter 13: 345–354, https://doi.org/10.1039/c6sm02089e.Search in Google Scholar PubMed

Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Mater. Today 16: 220–227, https://doi.org/10.1016/j.mattod.2013.06.004.Search in Google Scholar

Elbaum, R., Zaltzman, L., Burgert, I., and Fratzl, P. (2007). The role of wheat awns in the seed dispersal unit. Science 316: 884–886, https://doi.org/10.1126/science.1140097.Search in Google Scholar PubMed

Evangelista, D., Hotton, S., and Dumais, J. (2011). The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214: 521–529, https://doi.org/10.1242/jeb.050567.Search in Google Scholar PubMed

Fahn, A. and Zohary, M. (1955). On the pericarpial structure of the legumen, its evolution and relation to dehiscence. Phytomorphology 5: 99–111.Search in Google Scholar

Falt, S., Wagberg, L., and Vesterlind, E.L. (2003). Swelling of model films of cellulose having different charge densities and comparison to the swelling behavior of corresponding fibers. Langmuir 19: 7895–7903, https://doi.org/10.1021/la026984i.Search in Google Scholar

Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y.R., Tu, K.K., Hirt, A.M., Masania, K., Burgert, I., and Keplinger, T. (2019). Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6: 1802190, https://doi.org/10.1002/advs.201802190.Search in Google Scholar PubMed PubMed Central

Friedman, J., Gunderman, N., and Ellis, M. (1978). Water response of the hygrochastic skeletons of the true rose of Jericho (Anastatica hierochuntica L.). Oecologia 32: 289–301, https://doi.org/10.1007/bf00345108.Search in Google Scholar PubMed

Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., and Lewis, J.A. (2016). Biomimetic 4D printing. Nat. Mater. 15: 413, https://doi.org/10.1038/nmat4544.Search in Google Scholar PubMed

Gray, D.G. (2016). Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6: 213, https://doi.org/10.3390/nano6110213.Search in Google Scholar PubMed PubMed Central

Guccini, V., Yu, S., Meng, Z.J., Kontturi, E., Demmel, F., and Salazar-Alvarez, G. (2022). The impact of surface charges of carboxylated cellulose nanofibrils on the water motions in hydrated films. Biomacromolecules 23: 3104–3115, https://doi.org/10.1021/acs.biomac.1c01517.Search in Google Scholar PubMed PubMed Central

Hatakeyama, H. and Hatakeyama, T. (1998). Interaction between water and hydrophilic polymers. Thermochim. Acta 308: 3–22, https://doi.org/10.1016/s0040-6031(97)00325-0.Search in Google Scholar

Hatakeyama, T., Inui, Y., Iijima, M., and Hatakeyama, H. (2013). Bound water restrained by nanocellulose fibres. J. Therm. Anal. Calorim. 113: 1019–1025, https://doi.org/10.1007/s10973-012-2823-3.Search in Google Scholar

Hegazy, A.K., Barakat, H.N., and Kabiel, H.F. (2006). Anatomical significance of the hygrochastic movement in Anastatica hierochuntica. Ann. Bot. 97: 47–55, https://doi.org/10.1093/aob/mcj011.Search in Google Scholar PubMed PubMed Central

Huang, B., Zhu, G., Wang, S., Li, Q., Viguié, J., He, H., and Dufresne, A. (2021). A gradient poly(vinyl alcohol)/polysaccharides composite film towards robust and fast stimuli-responsive actuators by interface co-precipitation. J. Mater. Chem. A 9: 22973–22981, https://doi.org/10.1039/d1ta06885g.Search in Google Scholar

Ibbett, R., Wortmann, F., Varga, K., and Schuster, K.C. (2014). A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation. Cellulose 21: 139–152, https://doi.org/10.1007/s10570-013-0106-1.Search in Google Scholar

Ingold, C.T. (1959). Peristome teeth and spore discharge in mosses. Trans. Bot. Soc. Edinburgh 38: 76–88, https://doi.org/10.1080/03746605909469455.Search in Google Scholar

Inphonlek, S., Sunintaboon, P., Léonard, M., and Durand, A. (2020). Chitosan/carboxymethylcellulose-stabilized poly(lactide-co-glycolide) particles as bio-based drug delivery carriers. Carbohydr. Polym. 242: 116417, https://doi.org/10.1016/j.carbpol.2020.116417.Search in Google Scholar PubMed

Isogai, A. (2018). Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 94: 161–179, https://doi.org/10.2183/pjab.94.012.Search in Google Scholar PubMed PubMed Central

Isogai, A., Saito, T., and Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale 3: 71–85, https://doi.org/10.1039/c0nr00583e.Search in Google Scholar PubMed

Jia, H. and Michinobu, T. (2023). Cellulose-based conductive gels and their applications. Chemnanomat 9: e202300020, https://doi.org/10.1002/cnma.202300020.Search in Google Scholar

Jiang, X.F., Tian, B.K., Xuan, X.Y., Zhou, W.Q., Zhou, J.X., Chen, Y.Q., Lu, Y., and Zhang, Z.H. (2021). Cellulose membranes as moisture-driven actuators with predetermined deformations and high load uptake. Int. J. Smart Nano Mater. 12: 146–156, https://doi.org/10.1080/19475411.2021.1906780.Search in Google Scholar

Kalutskaya, E.P. and Gusev, S.S. (1980). An infrared spectroscopic investigation of the hydration of cellulose. Polym. Sci. U.S.S.R. 22: 550–556, https://doi.org/10.1016/0032-3950(80)90378-0.Search in Google Scholar

Kittle, J.D., Du, X., Jiang, F., Quian, C., Heinze, T., Roman, M., and Esker, A.R. (2011). Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12: 2881–2887, https://doi.org/10.1021/bm200352q.Search in Google Scholar PubMed

Kocherbitov, V., Ulvenlund, S., Kober, M., Jarring, K., and Arnebrant, T. (2008). Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J. Phys. Chem. B 112: 3728–3734, https://doi.org/10.1021/jp711554c.Search in Google Scholar PubMed

Kuang, Y.D., Chen, C.J., Cheng, J., Pastel, G., Li, T., Song, J.W., Jiang, F., Li, Y.J., Zhang, Y., Jang, S.H., et al.. (2019). Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech. Lett. 29: 100463, https://doi.org/10.1016/j.eml.2019.100463.Search in Google Scholar

Kulasinski, K., Guyer, R., Derome, D., and Carmeliet, J. (2015). Water adsorption in wood microfibril-hemicellulose system: role of the crystalline–amorphous interface. Biomacromolecules 16: 2972–2978, https://doi.org/10.1021/acs.biomac.5b00878.Search in Google Scholar PubMed

Kumar, A., Rajamanickam, R., Hazra, J., Mahapatra, N.R., and Ghosh, P. (2022). Engineering the nonmorphing point of actuation for controlled drug release by hydrogel bilayer across the pH spectrum. ACS Appl. Mater. Interfaces 14: 56321–56330, https://doi.org/10.1021/acsami.2c16658.Search in Google Scholar PubMed

Le Duigou, A., Keryvin, V., Beaugrand, J., Pernes, M., Scarpa, F., and Castro, M. (2019). Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures. Compos. Pt. A-Appl. Sci. Manuf. 116: 36–45, https://doi.org/10.1016/j.compositesa.2018.10.018.Search in Google Scholar

Le Duigou, A., Requile, S., Beaugrand, J., Scarpa, F., and Castro, M. (2017). Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Mater. Struct. 26: 125009, https://doi.org/10.1088/1361-665x/aa9410.Search in Google Scholar

Leray, N., Talantikite, M., Villares, A., and Cathala, B. (2022). Xyloglucan-cellulose nanocrystal-chitosan double network hydrogels for soft actuators. Carbohydr. Polym. 293: 119753, https://doi.org/10.1016/j.carbpol.2022.119753.Search in Google Scholar PubMed

Li, K., Clarkson, C.M., Wang, L., Liu, Y., Lamm, M., Pang, Z., Zhou, Y., Qian, J., Tajvidi, M., Gardner, D.J., et al.. (2021). Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano 15: 3646–3673, https://doi.org/10.1021/acsnano.0c07613.Search in Google Scholar PubMed

Li, Y.A., Wang, J., Guo, J.J., Fu, C.L., Huang, L.L., Chen, L.H., Ni, Y.H., and Zheng, Q.H. (2023). UV and IR dual light triggered cellulose-based invisible actuators with high sensitivity. Int. J. Biol. Macromol. 238: 124031, https://doi.org/10.1016/j.ijbiomac.2023.124031.Search in Google Scholar PubMed

Lindh, E.L., Bergenstrahle-Wohlert, M., Terenzi, C., Salmen, L., and Furo, I. (2016). Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr. Res. 434: 136–142, https://doi.org/10.1016/j.carres.2016.09.006.Search in Google Scholar PubMed

Liu, Y., Shang, S., Mo, S., Wang, P., Yin, B., and Wei, J. (2021). Soft actuators built from cellulose paper: a review on actuation, material, fabrication, and applications. J. Sci. 6: 321–337, https://doi.org/10.1016/j.jsamd.2021.06.004.Search in Google Scholar

Lombardo, S., Cathala, B., and Villares, A. (2021). Adsorption of biopolymers onto nanocelluloses for the fabrication of hollow microcapsules. Nord. Pulp Pap. Res. J. 36: 651–661, https://doi.org/10.1515/npprj-2021-0040.Search in Google Scholar

Lopes da Costa, L., Moreau, C., Lourdin, D., Cathala, B., and Villares, A. (2023a). Shape-recovery in organic solvents of water-responsive cellulose nanofiber actuators. Cellulose 30: 5811–5824, https://doi.org/10.1007/s10570-023-05230-8.Search in Google Scholar

Lopes da Costa, L., Moreau, C., Lourdin, D., Cathala, B., and Villares, A. (2023b). Unraveling the control of reversibility for actuators based on cellulose nanofibers. Carbohydr. Polym. 314: 120951, https://doi.org/10.1016/j.carbpol.2023.120951.Search in Google Scholar PubMed

Marmottant, P., Ponomarenko, A., and Bienaime, D. (2013). The walk and jump of Equisetum spores. Proc. R. Soc. B-Biol. Sci. 280: 20131465, https://doi.org/10.1098/rspb.2013.1465.Search in Google Scholar PubMed PubMed Central

Minor, J.L. (1994). Hornification – its origin and meaning. Prog. Paper Recycling 3: 93–95.Search in Google Scholar

Mohammadi, P., Toivonen, M.S., Ikkala, O., Wagermaier, W., and Linder, M.B. (2017). Aligning cellulose nanofibril dispersions for tougher fibers. Sci. Rep. 7: 11860, https://doi.org/10.1038/s41598-017-12107-x.Search in Google Scholar PubMed PubMed Central

Mokhena, T.C., Sadiku, E.R., Mochane, M.J., Ray, S.S., John, M.J., and Mtibe, A. (2021). Mechanical properties of cellulose nanofibril papers and their bionanocomposites: a review. Carbohydr. Polym. 273: 118507, https://doi.org/10.1016/j.carbpol.2021.118507.Search in Google Scholar PubMed

Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941–3994, https://doi.org/10.1039/c0cs00108b.Search in Google Scholar PubMed

Moradian, M. and van de Ven, T.G.M. (2022). Formation of cellulose microspheres and nanocrystals from mildly carboxylated fibers. Cellulose 29: 3225–3237, https://doi.org/10.1007/s10570-022-04486-w.Search in Google Scholar

Mredha, M.T.I., Le, H.H., Tran, V.T., Trtik, P., Cui, J.X., and Jeon, I. (2019). Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horizons 6: 1504–1511, https://doi.org/10.1039/c9mh00320g.Search in Google Scholar

Mudedla, S.K., Vuorte, M., Veijola, E., Marjamaa, K., Koivula, A., Linder, M.B., Arola, S., and Sammalkorpi, M. (2021). Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study. Cellulose 28: 3917–3933, https://doi.org/10.1007/s10570-021-03751-8.Search in Google Scholar

Nakamura, K., Hatakeyama, T., and Hatakeyama, H. (1981). Studies on bound water of cellulose by differential scanning calorimetry. Text. Res. J. 51: 607–613, https://doi.org/10.1177/004051758105100909.Search in Google Scholar

Peron, M., Celino, A., Castro, M., Jacquemin, F., and Le Duigou, A. (2019). Study of hygroscopic stresses in asymmetric biocomposite laminates. Compos. Sci. Technol. 169: 7–15, https://doi.org/10.1016/j.compscitech.2018.10.027.Search in Google Scholar

Qiu, X. and Hu, S. (2013). “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6: 738–781, https://doi.org/10.3390/ma6030738.Search in Google Scholar PubMed PubMed Central

Quan, H.C., Kisailus, D., and Meyers, M.A. (2021). Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater. 6: 264–283, https://doi.org/10.1038/s41578-020-00251-2.Search in Google Scholar

Rafsanjani, A., Brule, V., Western, T.L., and Pasini, D. (2015). Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 5: 8064, https://doi.org/10.1038/srep08064.Search in Google Scholar PubMed PubMed Central

Ren, L., Li, B., Wei, G., Wang, K., Song, Z., Wei, Y., Ren, L., and Qingping, L. (2021). Biology and bioinspiration of soft robotics: actuation, sensing, and system integration. iScience 24: 103075, https://doi.org/10.1016/j.isci.2021.103075.Search in Google Scholar PubMed PubMed Central

Ren, Q., Sun, X., Liu, W., Li, Z., Jiang, C., and Hou, Q. (2023). High performance and multifunctional Janus bio-nanocomposite film for underwater actuators with excellent sensitivity and controllability. Chem. Eng. J. 456: 141115, https://doi.org/10.1016/j.cej.2022.141115.Search in Google Scholar

Reyssat, E. and Mahadevan, L. (2011). How wet paper curls. Epl 93: 54001, https://doi.org/10.1209/0295-5075/93/54001.Search in Google Scholar

Saito, T., Shibata, I., Isogai, A., Suguri, N., and Sumikawa, N. (2005). Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 61: 414–419, https://doi.org/10.1016/j.carbpol.2005.05.014.Search in Google Scholar

Salem, K.S., Naithani, V., Jameel, H., Lucia, L., and Pal, L. (2022). A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse. Carbohydr. Polym. 295: 119856, https://doi.org/10.1016/j.carbpol.2022.119856.Search in Google Scholar PubMed

Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., Mihhels, K., Kroeger, M., Meng, Z.J., Wohlert, J., et al.. (2023). Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123: 1925–2015, https://doi.org/10.1021/acs.chemrev.2c00611.Search in Google Scholar PubMed PubMed Central

Spies, P.-A., Keplinger, T., Horbelt, N., Reppe, F., Scoppola, E., Eder, M., Fratzl, P., Burgert, I., and Rüggeberg, M. (2022). Cellulose lattice strains and stress transfer in native and delignified wood. Carbohydr. Polym. 296: 119922, https://doi.org/10.1016/j.carbpol.2022.119922.Search in Google Scholar PubMed

Stannett, V.T. and Williams, J.L. (2018). The transport of water in cellulosic materials. In: Fibre-water interactions in paper-making, Trans. of the VIth Fund. Res. Symp. Oxford, 1977. Fundamental Research Committee, e., Manchester, UK, pp. 497–513.Search in Google Scholar

Timoshenko, S. (1925). Analysis of Bi-metal thermostats. J. Opt. Soc. Am. 11: 233–255, https://doi.org/10.1364/josa.11.000233.Search in Google Scholar

Wagberg, L., Decher, G., Norgren, M., Lindstroem, T., Ankerfors, M., and Axnaes, K. (2008). The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24: 784–795, https://doi.org/10.1021/la702481v.Search in Google Scholar PubMed

Wang, M., Tian, X.L., Ras, R.H.A., and Ikkala, O. (2015). Sensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuation. Adv. Mater. Interfaces 2: 1–7, https://doi.org/10.1002/admi.201500080.Search in Google Scholar

Wang, S., Li, T., Chen, C.J., Kong, W.Q., Zhu, S.Z., Dai, J.Q., Diaz, A.J., Hitz, E., Solares, S.D., Li, T., et al.. (2018). Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater. 28: 1–10, https://doi.org/10.1002/adfm.201707491.Search in Google Scholar

Wiesemüller, F., Meng, Z., Hu, Y., Farinha, A., Govdeli, Y., Nguyen, P.H., Nyström, G., and Kovač, M. (2022). Transient bio-inspired gliders with embodied humidity responsive actuators for environmental sensing. Front. Robot. AI 9: 1011793, https://doi.org/10.3389/frobt.2022.1011793.Search in Google Scholar PubMed PubMed Central

Zhang, K., Geissler, A., Standhardt, M., Mehlhase, S., Gallei, M., Chen, L.Q., and Thiele, C.M. (2015). Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Sci. Rep. 5: 11011, https://doi.org/10.1038/srep11011.Search in Google Scholar PubMed PubMed Central

Zhu, Q., Jin, Y.X., Wang, W., Sun, G., and Wang, D. (2019). Bioinspired smart moisture actuators based on nanoscale cellulose materials and porous, hydrophilic EVOH nanofibrous membranes. ACS Appl. Mater. Interfaces 11: 1440–1448, https://doi.org/10.1021/acsami.8b17538.Search in Google Scholar PubMed

Zhu, Q., Yao, Q., Sun, J., Chen, H., Xu, W., Liu, J., and Wang, Q. (2020a). Stimuli induced cellulose nanomaterials alignment and its emerging applications: a review. Carbohydr. Polym. 230: 115609, https://doi.org/10.1016/j.carbpol.2019.115609.Search in Google Scholar PubMed

Zhu, Q.Q., Liu, S.M., Sun, J.Z., Liu, J., Kirubaharan, C.J., Chen, H.L., Xu, W.H., and Wang, Q.Q. (2020b). Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr. Polym. 235: 115933, https://doi.org/10.1016/j.carbpol.2020.115933.Search in Google Scholar PubMed

Received: 2023-07-03
Accepted: 2023-11-06
Published Online: 2023-11-17
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/npprj-2023-0037/html
Scroll to top button