Abstract
Water plays an important role in the properties of cellulose. In materials design, the water uptake of cellulose has been traditionally seen as a drawback, since water reduces mechanical resistance of paper and cardboard, and at high hydration, cellulose-based products are disintegrated. However, recently, the hydration of cellulose has been considered as an advantage to design water-responsive soft actuators. In Nature, water is the fuel for several plant functions that involve motion, such as the seed release or the plant protection from high temperature and radiation. Inspired by these natural systems, cellulose-based actuators have been designed to display different movements (bending, twisting, curling) in response to water. Biopolymer structuration inducing anisotropy within the system allows the asymmetric expansion of layers, which results in macroscopic movement. This review gives an overview of the soft actuators triggered by the hydration/dehydration processes of cellulose. We present representative examples of water-triggered natural actuators, which have inspired researchers to design anisotropic cellulose-based materials that develop controlled movement in response to water.
Funding source: Conseil Régional du Pays de la Loire
Acknowledgments
The authors gratefully thank the financial support of Conseil Régional des Pays de la Loire and Transform Division from the French National Research Institute for Agriculture, Food and Environment.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization, A.V.; funding acquisition, A.V.; writing-original draft, A.V.; writing-review and editing, L.L.C.
-
Competing interests: The authors declare no conflicts of interest.
-
Research funding: Conseil Régional des Pays de la Loire and Transform Division from the French National Research Institute for Agriculture, Food and Environment.
-
Data availability: Not applicable.
References
Abraham, Y., Tamburu, C., Klein, E., Dunlop, J.W.C., Fratzl, P., Raviv, U., and Elbaum, R. (2012). Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface. 9: 640–647, https://doi.org/10.1098/rsif.2011.0395.Search in Google Scholar PubMed PubMed Central
Armon, S., Efrati, E., Kupferman, R., and Sharon, E. (2011). Geometry and mechanics in the opening of chiral seed pods. Science 333: 1726–1730, https://doi.org/10.1126/science.1203874.Search in Google Scholar PubMed
Benítez, A.J., Torres-Rendon, J., Poutanen, M., and Walther, A. (2013). Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14: 4497–4506, https://doi.org/10.1021/bm401451m.Search in Google Scholar PubMed
Benselfelt, T., Rothemund, P., and Lee, P.S. (2023). Ultrafast, high-strain, and strong uniaxial hydrogel actuators from recyclable nanofibril networks. Adv. Mater. 35: 1–10, https://doi.org/10.1002/adma.202300487.Search in Google Scholar PubMed
Berglund, L.A. and Burgert, I. (2018). Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30: 1–15, https://doi.org/10.1002/adma.201704285.Search in Google Scholar PubMed
Bettotti, P., Maestri, C.A., Guider, R., Mancini, I., Nativ-Roth, E., Golan, Y., and Scarpa, M. (2016). Dynamics of hydration of nanocellulose films. Adv. Mater. Interfaces 3: 1–7, https://doi.org/10.1002/admi.201500415.Search in Google Scholar
Burgert, I. and Fratzl, P. (2009). Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. A Math. Phys. Eng. Sci. 367: 1541–1557, https://doi.org/10.1098/rsta.2009.0003.Search in Google Scholar PubMed
Chami Khazraji, A. and Robert, S. (2013). Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling. J. Nanomater. 2013: 409676.10.1155/2013/409676Search in Google Scholar
Chemin, M., Beaumal, B., Cathala, B., and Villares, A. (2020). pH-responsive properties of asymmetric nanopapers of nanofibrillated cellulose. Nanomaterials 10: 1380, https://doi.org/10.3390/nano10071380.Search in Google Scholar PubMed PubMed Central
Chen, M., Coasne, B., Guyer, R., Derome, D., and Carmeliet, J. (2018). Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nat. Commun. 9: 3507, https://doi.org/10.1038/s41467-018-05897-9.Search in Google Scholar PubMed PubMed Central
Chen, W., Sun, B., Biehl, P., and Zhang, K. (2022). Cellulose-based soft actuators. Macromol. Mater. Eng. 307: 2200072, https://doi.org/10.1002/mame.202200072.Search in Google Scholar
Dawson, J., Vincent, J.F.V., and Rocca, A.M. (1997). How pine cones open. Nature 390: 668, https://doi.org/10.1038/37745.Search in Google Scholar
De France, K.J., Hoare, T., and Cranston, E.D. (2017). Review of hydrogels and aerogels containing nanocellulose. Chem. Mat. 29: 4609–4631, https://doi.org/10.1021/acs.chemmater.7b00531.Search in Google Scholar
Deng, Y.Q., Xi, J.F., Meng, L.C., Lou, Y.L., Seidi, F., Wu, W.B., and Xiao, H.N. (2022). Stimuli-responsive nanocellulose hydrogels: an overview. Eur. Polym. J. 180: 111591, https://doi.org/10.1016/j.eurpolymj.2022.111591.Search in Google Scholar
Dicker, M.P., Rossiter, J.M., Bond, I.P., and Weaver, P.M. (2014). Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants. Bioinspiration Biomimetics 9: 036015, https://doi.org/10.1088/1748-3182/9/3/036015.Search in Google Scholar PubMed
Duan, J.J., Liang, X.C., Zhu, K.K., Guo, J.H., and Zhang, L.N. (2017). Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter 13: 345–354, https://doi.org/10.1039/c6sm02089e.Search in Google Scholar PubMed
Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Mater. Today 16: 220–227, https://doi.org/10.1016/j.mattod.2013.06.004.Search in Google Scholar
Elbaum, R., Zaltzman, L., Burgert, I., and Fratzl, P. (2007). The role of wheat awns in the seed dispersal unit. Science 316: 884–886, https://doi.org/10.1126/science.1140097.Search in Google Scholar PubMed
Evangelista, D., Hotton, S., and Dumais, J. (2011). The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214: 521–529, https://doi.org/10.1242/jeb.050567.Search in Google Scholar PubMed
Fahn, A. and Zohary, M. (1955). On the pericarpial structure of the legumen, its evolution and relation to dehiscence. Phytomorphology 5: 99–111.Search in Google Scholar
Falt, S., Wagberg, L., and Vesterlind, E.L. (2003). Swelling of model films of cellulose having different charge densities and comparison to the swelling behavior of corresponding fibers. Langmuir 19: 7895–7903, https://doi.org/10.1021/la026984i.Search in Google Scholar
Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y.R., Tu, K.K., Hirt, A.M., Masania, K., Burgert, I., and Keplinger, T. (2019). Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6: 1802190, https://doi.org/10.1002/advs.201802190.Search in Google Scholar PubMed PubMed Central
Friedman, J., Gunderman, N., and Ellis, M. (1978). Water response of the hygrochastic skeletons of the true rose of Jericho (Anastatica hierochuntica L.). Oecologia 32: 289–301, https://doi.org/10.1007/bf00345108.Search in Google Scholar PubMed
Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., and Lewis, J.A. (2016). Biomimetic 4D printing. Nat. Mater. 15: 413, https://doi.org/10.1038/nmat4544.Search in Google Scholar PubMed
Gray, D.G. (2016). Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6: 213, https://doi.org/10.3390/nano6110213.Search in Google Scholar PubMed PubMed Central
Guccini, V., Yu, S., Meng, Z.J., Kontturi, E., Demmel, F., and Salazar-Alvarez, G. (2022). The impact of surface charges of carboxylated cellulose nanofibrils on the water motions in hydrated films. Biomacromolecules 23: 3104–3115, https://doi.org/10.1021/acs.biomac.1c01517.Search in Google Scholar PubMed PubMed Central
Hatakeyama, H. and Hatakeyama, T. (1998). Interaction between water and hydrophilic polymers. Thermochim. Acta 308: 3–22, https://doi.org/10.1016/s0040-6031(97)00325-0.Search in Google Scholar
Hatakeyama, T., Inui, Y., Iijima, M., and Hatakeyama, H. (2013). Bound water restrained by nanocellulose fibres. J. Therm. Anal. Calorim. 113: 1019–1025, https://doi.org/10.1007/s10973-012-2823-3.Search in Google Scholar
Hegazy, A.K., Barakat, H.N., and Kabiel, H.F. (2006). Anatomical significance of the hygrochastic movement in Anastatica hierochuntica. Ann. Bot. 97: 47–55, https://doi.org/10.1093/aob/mcj011.Search in Google Scholar PubMed PubMed Central
Huang, B., Zhu, G., Wang, S., Li, Q., Viguié, J., He, H., and Dufresne, A. (2021). A gradient poly(vinyl alcohol)/polysaccharides composite film towards robust and fast stimuli-responsive actuators by interface co-precipitation. J. Mater. Chem. A 9: 22973–22981, https://doi.org/10.1039/d1ta06885g.Search in Google Scholar
Ibbett, R., Wortmann, F., Varga, K., and Schuster, K.C. (2014). A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation. Cellulose 21: 139–152, https://doi.org/10.1007/s10570-013-0106-1.Search in Google Scholar
Ingold, C.T. (1959). Peristome teeth and spore discharge in mosses. Trans. Bot. Soc. Edinburgh 38: 76–88, https://doi.org/10.1080/03746605909469455.Search in Google Scholar
Inphonlek, S., Sunintaboon, P., Léonard, M., and Durand, A. (2020). Chitosan/carboxymethylcellulose-stabilized poly(lactide-co-glycolide) particles as bio-based drug delivery carriers. Carbohydr. Polym. 242: 116417, https://doi.org/10.1016/j.carbpol.2020.116417.Search in Google Scholar PubMed
Isogai, A. (2018). Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 94: 161–179, https://doi.org/10.2183/pjab.94.012.Search in Google Scholar PubMed PubMed Central
Isogai, A., Saito, T., and Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale 3: 71–85, https://doi.org/10.1039/c0nr00583e.Search in Google Scholar PubMed
Jia, H. and Michinobu, T. (2023). Cellulose-based conductive gels and their applications. Chemnanomat 9: e202300020, https://doi.org/10.1002/cnma.202300020.Search in Google Scholar
Jiang, X.F., Tian, B.K., Xuan, X.Y., Zhou, W.Q., Zhou, J.X., Chen, Y.Q., Lu, Y., and Zhang, Z.H. (2021). Cellulose membranes as moisture-driven actuators with predetermined deformations and high load uptake. Int. J. Smart Nano Mater. 12: 146–156, https://doi.org/10.1080/19475411.2021.1906780.Search in Google Scholar
Kalutskaya, E.P. and Gusev, S.S. (1980). An infrared spectroscopic investigation of the hydration of cellulose. Polym. Sci. U.S.S.R. 22: 550–556, https://doi.org/10.1016/0032-3950(80)90378-0.Search in Google Scholar
Kittle, J.D., Du, X., Jiang, F., Quian, C., Heinze, T., Roman, M., and Esker, A.R. (2011). Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12: 2881–2887, https://doi.org/10.1021/bm200352q.Search in Google Scholar PubMed
Kocherbitov, V., Ulvenlund, S., Kober, M., Jarring, K., and Arnebrant, T. (2008). Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J. Phys. Chem. B 112: 3728–3734, https://doi.org/10.1021/jp711554c.Search in Google Scholar PubMed
Kuang, Y.D., Chen, C.J., Cheng, J., Pastel, G., Li, T., Song, J.W., Jiang, F., Li, Y.J., Zhang, Y., Jang, S.H., et al.. (2019). Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech. Lett. 29: 100463, https://doi.org/10.1016/j.eml.2019.100463.Search in Google Scholar
Kulasinski, K., Guyer, R., Derome, D., and Carmeliet, J. (2015). Water adsorption in wood microfibril-hemicellulose system: role of the crystalline–amorphous interface. Biomacromolecules 16: 2972–2978, https://doi.org/10.1021/acs.biomac.5b00878.Search in Google Scholar PubMed
Kumar, A., Rajamanickam, R., Hazra, J., Mahapatra, N.R., and Ghosh, P. (2022). Engineering the nonmorphing point of actuation for controlled drug release by hydrogel bilayer across the pH spectrum. ACS Appl. Mater. Interfaces 14: 56321–56330, https://doi.org/10.1021/acsami.2c16658.Search in Google Scholar PubMed
Le Duigou, A., Keryvin, V., Beaugrand, J., Pernes, M., Scarpa, F., and Castro, M. (2019). Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures. Compos. Pt. A-Appl. Sci. Manuf. 116: 36–45, https://doi.org/10.1016/j.compositesa.2018.10.018.Search in Google Scholar
Le Duigou, A., Requile, S., Beaugrand, J., Scarpa, F., and Castro, M. (2017). Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Mater. Struct. 26: 125009, https://doi.org/10.1088/1361-665x/aa9410.Search in Google Scholar
Leray, N., Talantikite, M., Villares, A., and Cathala, B. (2022). Xyloglucan-cellulose nanocrystal-chitosan double network hydrogels for soft actuators. Carbohydr. Polym. 293: 119753, https://doi.org/10.1016/j.carbpol.2022.119753.Search in Google Scholar PubMed
Li, K., Clarkson, C.M., Wang, L., Liu, Y., Lamm, M., Pang, Z., Zhou, Y., Qian, J., Tajvidi, M., Gardner, D.J., et al.. (2021). Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano 15: 3646–3673, https://doi.org/10.1021/acsnano.0c07613.Search in Google Scholar PubMed
Li, Y.A., Wang, J., Guo, J.J., Fu, C.L., Huang, L.L., Chen, L.H., Ni, Y.H., and Zheng, Q.H. (2023). UV and IR dual light triggered cellulose-based invisible actuators with high sensitivity. Int. J. Biol. Macromol. 238: 124031, https://doi.org/10.1016/j.ijbiomac.2023.124031.Search in Google Scholar PubMed
Lindh, E.L., Bergenstrahle-Wohlert, M., Terenzi, C., Salmen, L., and Furo, I. (2016). Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr. Res. 434: 136–142, https://doi.org/10.1016/j.carres.2016.09.006.Search in Google Scholar PubMed
Liu, Y., Shang, S., Mo, S., Wang, P., Yin, B., and Wei, J. (2021). Soft actuators built from cellulose paper: a review on actuation, material, fabrication, and applications. J. Sci. 6: 321–337, https://doi.org/10.1016/j.jsamd.2021.06.004.Search in Google Scholar
Lombardo, S., Cathala, B., and Villares, A. (2021). Adsorption of biopolymers onto nanocelluloses for the fabrication of hollow microcapsules. Nord. Pulp Pap. Res. J. 36: 651–661, https://doi.org/10.1515/npprj-2021-0040.Search in Google Scholar
Lopes da Costa, L., Moreau, C., Lourdin, D., Cathala, B., and Villares, A. (2023a). Shape-recovery in organic solvents of water-responsive cellulose nanofiber actuators. Cellulose 30: 5811–5824, https://doi.org/10.1007/s10570-023-05230-8.Search in Google Scholar
Lopes da Costa, L., Moreau, C., Lourdin, D., Cathala, B., and Villares, A. (2023b). Unraveling the control of reversibility for actuators based on cellulose nanofibers. Carbohydr. Polym. 314: 120951, https://doi.org/10.1016/j.carbpol.2023.120951.Search in Google Scholar PubMed
Marmottant, P., Ponomarenko, A., and Bienaime, D. (2013). The walk and jump of Equisetum spores. Proc. R. Soc. B-Biol. Sci. 280: 20131465, https://doi.org/10.1098/rspb.2013.1465.Search in Google Scholar PubMed PubMed Central
Minor, J.L. (1994). Hornification – its origin and meaning. Prog. Paper Recycling 3: 93–95.Search in Google Scholar
Mohammadi, P., Toivonen, M.S., Ikkala, O., Wagermaier, W., and Linder, M.B. (2017). Aligning cellulose nanofibril dispersions for tougher fibers. Sci. Rep. 7: 11860, https://doi.org/10.1038/s41598-017-12107-x.Search in Google Scholar PubMed PubMed Central
Mokhena, T.C., Sadiku, E.R., Mochane, M.J., Ray, S.S., John, M.J., and Mtibe, A. (2021). Mechanical properties of cellulose nanofibril papers and their bionanocomposites: a review. Carbohydr. Polym. 273: 118507, https://doi.org/10.1016/j.carbpol.2021.118507.Search in Google Scholar PubMed
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941–3994, https://doi.org/10.1039/c0cs00108b.Search in Google Scholar PubMed
Moradian, M. and van de Ven, T.G.M. (2022). Formation of cellulose microspheres and nanocrystals from mildly carboxylated fibers. Cellulose 29: 3225–3237, https://doi.org/10.1007/s10570-022-04486-w.Search in Google Scholar
Mredha, M.T.I., Le, H.H., Tran, V.T., Trtik, P., Cui, J.X., and Jeon, I. (2019). Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horizons 6: 1504–1511, https://doi.org/10.1039/c9mh00320g.Search in Google Scholar
Mudedla, S.K., Vuorte, M., Veijola, E., Marjamaa, K., Koivula, A., Linder, M.B., Arola, S., and Sammalkorpi, M. (2021). Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study. Cellulose 28: 3917–3933, https://doi.org/10.1007/s10570-021-03751-8.Search in Google Scholar
Nakamura, K., Hatakeyama, T., and Hatakeyama, H. (1981). Studies on bound water of cellulose by differential scanning calorimetry. Text. Res. J. 51: 607–613, https://doi.org/10.1177/004051758105100909.Search in Google Scholar
Peron, M., Celino, A., Castro, M., Jacquemin, F., and Le Duigou, A. (2019). Study of hygroscopic stresses in asymmetric biocomposite laminates. Compos. Sci. Technol. 169: 7–15, https://doi.org/10.1016/j.compscitech.2018.10.027.Search in Google Scholar
Qiu, X. and Hu, S. (2013). “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6: 738–781, https://doi.org/10.3390/ma6030738.Search in Google Scholar PubMed PubMed Central
Quan, H.C., Kisailus, D., and Meyers, M.A. (2021). Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater. 6: 264–283, https://doi.org/10.1038/s41578-020-00251-2.Search in Google Scholar
Rafsanjani, A., Brule, V., Western, T.L., and Pasini, D. (2015). Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 5: 8064, https://doi.org/10.1038/srep08064.Search in Google Scholar PubMed PubMed Central
Ren, L., Li, B., Wei, G., Wang, K., Song, Z., Wei, Y., Ren, L., and Qingping, L. (2021). Biology and bioinspiration of soft robotics: actuation, sensing, and system integration. iScience 24: 103075, https://doi.org/10.1016/j.isci.2021.103075.Search in Google Scholar PubMed PubMed Central
Ren, Q., Sun, X., Liu, W., Li, Z., Jiang, C., and Hou, Q. (2023). High performance and multifunctional Janus bio-nanocomposite film for underwater actuators with excellent sensitivity and controllability. Chem. Eng. J. 456: 141115, https://doi.org/10.1016/j.cej.2022.141115.Search in Google Scholar
Reyssat, E. and Mahadevan, L. (2011). How wet paper curls. Epl 93: 54001, https://doi.org/10.1209/0295-5075/93/54001.Search in Google Scholar
Saito, T., Shibata, I., Isogai, A., Suguri, N., and Sumikawa, N. (2005). Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 61: 414–419, https://doi.org/10.1016/j.carbpol.2005.05.014.Search in Google Scholar
Salem, K.S., Naithani, V., Jameel, H., Lucia, L., and Pal, L. (2022). A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse. Carbohydr. Polym. 295: 119856, https://doi.org/10.1016/j.carbpol.2022.119856.Search in Google Scholar PubMed
Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., Mihhels, K., Kroeger, M., Meng, Z.J., Wohlert, J., et al.. (2023). Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123: 1925–2015, https://doi.org/10.1021/acs.chemrev.2c00611.Search in Google Scholar PubMed PubMed Central
Spies, P.-A., Keplinger, T., Horbelt, N., Reppe, F., Scoppola, E., Eder, M., Fratzl, P., Burgert, I., and Rüggeberg, M. (2022). Cellulose lattice strains and stress transfer in native and delignified wood. Carbohydr. Polym. 296: 119922, https://doi.org/10.1016/j.carbpol.2022.119922.Search in Google Scholar PubMed
Stannett, V.T. and Williams, J.L. (2018). The transport of water in cellulosic materials. In: Fibre-water interactions in paper-making, Trans. of the VIth Fund. Res. Symp. Oxford, 1977. Fundamental Research Committee, e., Manchester, UK, pp. 497–513.Search in Google Scholar
Timoshenko, S. (1925). Analysis of Bi-metal thermostats. J. Opt. Soc. Am. 11: 233–255, https://doi.org/10.1364/josa.11.000233.Search in Google Scholar
Wagberg, L., Decher, G., Norgren, M., Lindstroem, T., Ankerfors, M., and Axnaes, K. (2008). The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24: 784–795, https://doi.org/10.1021/la702481v.Search in Google Scholar PubMed
Wang, M., Tian, X.L., Ras, R.H.A., and Ikkala, O. (2015). Sensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuation. Adv. Mater. Interfaces 2: 1–7, https://doi.org/10.1002/admi.201500080.Search in Google Scholar
Wang, S., Li, T., Chen, C.J., Kong, W.Q., Zhu, S.Z., Dai, J.Q., Diaz, A.J., Hitz, E., Solares, S.D., Li, T., et al.. (2018). Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater. 28: 1–10, https://doi.org/10.1002/adfm.201707491.Search in Google Scholar
Wiesemüller, F., Meng, Z., Hu, Y., Farinha, A., Govdeli, Y., Nguyen, P.H., Nyström, G., and Kovač, M. (2022). Transient bio-inspired gliders with embodied humidity responsive actuators for environmental sensing. Front. Robot. AI 9: 1011793, https://doi.org/10.3389/frobt.2022.1011793.Search in Google Scholar PubMed PubMed Central
Zhang, K., Geissler, A., Standhardt, M., Mehlhase, S., Gallei, M., Chen, L.Q., and Thiele, C.M. (2015). Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Sci. Rep. 5: 11011, https://doi.org/10.1038/srep11011.Search in Google Scholar PubMed PubMed Central
Zhu, Q., Jin, Y.X., Wang, W., Sun, G., and Wang, D. (2019). Bioinspired smart moisture actuators based on nanoscale cellulose materials and porous, hydrophilic EVOH nanofibrous membranes. ACS Appl. Mater. Interfaces 11: 1440–1448, https://doi.org/10.1021/acsami.8b17538.Search in Google Scholar PubMed
Zhu, Q., Yao, Q., Sun, J., Chen, H., Xu, W., Liu, J., and Wang, Q. (2020a). Stimuli induced cellulose nanomaterials alignment and its emerging applications: a review. Carbohydr. Polym. 230: 115609, https://doi.org/10.1016/j.carbpol.2019.115609.Search in Google Scholar PubMed
Zhu, Q.Q., Liu, S.M., Sun, J.Z., Liu, J., Kirubaharan, C.J., Chen, H.L., Xu, W.H., and Wang, Q.Q. (2020b). Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr. Polym. 235: 115933, https://doi.org/10.1016/j.carbpol.2020.115933.Search in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Biorefining
- Organic acid fractionation of hardwoods planted in social forestry
- Paper Technology
- Effect of fine fibers on secondary fibers and recycled paper
- Paper Chemistry
- Increased recyclability of wet strengthened liquid packaging board, through synergetic effects of combining CMC and PAE – a case study in full scale
- Packaging
- Printable active packaging film with Pelargonium graveolens oil
- Chemical Technology/Modifications
- Water uptake as a fuel for soft actuators from cellulose
- Miscellaneous
- Nanofibers/reduced graphene oxide/polypyrrole for High-performance electrode material
- Chemical properties, crystallinity, and fiber biometry of Jabon (Anthocephalus cadamba) wood for pulp raw material: the effect of age and position
- Penetration and spreading of graphene oxide ink in rice paper enabling its unique expressiveness in Chinese paintings
Articles in the same Issue
- Frontmatter
- Biorefining
- Organic acid fractionation of hardwoods planted in social forestry
- Paper Technology
- Effect of fine fibers on secondary fibers and recycled paper
- Paper Chemistry
- Increased recyclability of wet strengthened liquid packaging board, through synergetic effects of combining CMC and PAE – a case study in full scale
- Packaging
- Printable active packaging film with Pelargonium graveolens oil
- Chemical Technology/Modifications
- Water uptake as a fuel for soft actuators from cellulose
- Miscellaneous
- Nanofibers/reduced graphene oxide/polypyrrole for High-performance electrode material
- Chemical properties, crystallinity, and fiber biometry of Jabon (Anthocephalus cadamba) wood for pulp raw material: the effect of age and position
- Penetration and spreading of graphene oxide ink in rice paper enabling its unique expressiveness in Chinese paintings