Fibers pre-treatments with sodium silicate affect the properties of suspensions, films, and quality index of cellulose micro/nanofibrils
-
Adriano Reis Prazeres Mascarenhas
, Mário Vanoli Scatolino
, Matheus Cordazzo Dias
, Maria Alice Martins
, Rafael Rodolfo de Melo
, Renato Augusto Pereira Damásio
, Maressa Carvalho Mendonça
and Gustavo Henrique Denzin Tonoli
Abstract
The characteristics of cellulose micro/nanofibrils (MFC/CNF) can be improved with pre-treatments of the original fibers. The present work is proposed to study pre-treatment with sodium silicate (Na2SiO3) on bleached fibers of Eucalyptus sp. (EUC) and Pinus sp. (PIN) and its effects on the quality index of MFC/CNF. Particle homogeneity, turbidity, and microstructure of the suspensions were evaluated. Similarly, the physical-mechanical, and barrier properties of the films were studied. With the results obtained for suspensions and films, the quality index (QI) was MFC/CNF calculated. The smallest particle dimension was observed for MFC/CNF of Pinus sp. with 10 % of Na2SiO3, as well as the lowest turbidity (∼350 NTU) was obtained for MFC/CNF of Pinus sp. with 5 % of Na2SiO3. The pre-treatments reduced the transparency of the films by ∼25 % for EUC and ∼20 % for PIN. The films presented a suitable barrier to UVC radiation, water vapor, and oil. The tensile strength of EUC and PIN films was increased by 20 % using 10 % of Na2SiO3. The same concentration of Na2SiO3 provided QI 70 for EUC MFC/CNF. The Na2SiO3 was efficient to obtain the MFC/CNF with interesting properties and suitable to generate films with parameters required for packaging.
Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Award Identifier / Grant number: 300985/2022-3
Funding statement: The research was funded by the National Council for Scientific and Technological Development (CNPq) (finance code 300985/2022-3).
Acknowledgments
We are especially grateful to the Program in Wood Science and Technology (PPGCTM) of the Federal University of Lavras (UFLA) for providing study material and infrastructure. We would also like to thank Embrapa Instrumentação and Klabin S. A. for the availability of inputs and equipment for the analysis required in this work. The authors are also grateful to the Coordination for the Improvement of Superior Education Personnel (CAPES) and Amapá Research Support Foundation (FAPEAP) for providing the research grant.
-
Conflict of interest: The authors declare that there are no conflicts of interest.
References
Afsahi, G., Dimic-Misic, K., Gane, P., Budtova, T., Maloney, T., Vuorinen, T. (2018) The investigation of rheological and strength properties of NFC hydrogels and aerogels from hardwood pulp by short catalytic bleaching (Hcat). Cellulose 25:1637–1655. https://doi.org/10.1007/s10570-018-1678-6.10.1007/s10570-018-1678-6Search in Google Scholar
Albornoz-Palma, G., Ching, D., Valerio, O., Mendonça, R.T., Pereira, M. (2020) Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose 27:10631–10647. https://doi.org/10.1007/s10570-020-03304-5.10.1007/s10570-020-03304-5Search in Google Scholar
Amalraj, A., Gopi, S., Thomas, S., Haponiuk, J.T. (2018) Cellulose nanomaterials in biomedical, food, and Nutraceutical Applications: A Review. Macromol. Symp. 380:1800115. https://doi.org/10.1002/masy.201800115.10.1002/masy.201800115Search in Google Scholar
Amini, E., Hafez, I., Tajvidi, M., Bousfield, D.W. (2020) Cellulose and lignocellulose nanofibril suspensions and films: A comparison. Carbohydr. Polym. 250:117011. https://doi.org/10.1016/j.carbpol.2020.117011.10.1016/j.carbpol.2020.117011Search in Google Scholar PubMed
Ang, S., Haritos, V., Batchelor, W. (2019) Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose 26:4767–4786. https://doi.org/10.1007/s10570-019-02400-5.10.1007/s10570-019-02400-5Search in Google Scholar
ASTM Standard (2012) E-104-02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions.Search in Google Scholar
ASTM Standard (2016) ASTM E-96, Standard Test Methods for Water Vapor Transmission of Materials.Search in Google Scholar
ASTM Standard (2018) ASTM D882-18, Standard Test Methods for Tensile Properties of Thin Plastic Sheeting.Search in Google Scholar
Aulin, C., Yun, S.H., Wagberg, L., Lindström, T. (2009) Design of Highly Oleophobic Cellulose Surfaces from Structured Silicon Templates. Appl. Mater. Interfaces 1:2443–2452. https://doi.org/10.1021/am900394y.10.1021/am900394ySearch in Google Scholar PubMed
Balea, A., Fuente, E., Monte, M.C., Merayo, N., Campano, C., Negro, C., Blanco, A. (2020) Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules 25:256. http://dx.doi.org/10.3390/molecules25030526.10.3390/molecules25030526Search in Google Scholar PubMed PubMed Central
Banvillet, G., Depres, G., Belgacem, N., Bras, J. (2021a) Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production. Carbohydr. Polym. 255:117383. https://doi.org/10.1016/j.carbpol.2020.117383.10.1016/j.carbpol.2020.117383Search in Google Scholar PubMed
Banvillet, G., Gatt, E., Belgacem, N., Bras, J. (2021b) Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion. Bioresour. Technol. 327:124819. https://doi.org/10.1016/j.biortech.2021.124819.10.1016/j.biortech.2021.124819Search in Google Scholar PubMed
Bastante, C.C., Silva, N.H.C.S., Cardoso, L.C., Serrano, C.M., Ossa, E.J.M., Freire, C.S.R., Vilela, C. (2021) Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocoll. 117:106709. https://doi.org/10.1016/j.foodhyd.2021.106709.10.1016/j.foodhyd.2021.106709Search in Google Scholar
Bedane, A.H., Eic, M., Farmahini-Farahani, M., Xiao, H. (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J. Membr. Sci. 493:46–57. https://doi.org/10.1016/j.memsci.2015.06.009.10.1016/j.memsci.2015.06.009Search in Google Scholar
Bejoy, T., Midhun, C.R., Athira, K.B., Rubiyah, M.H., Jithin, J., Audrey, M., Drisko, G.L., Sanchez, C. (2018) Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 24:11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627.10.1021/acs.chemrev.7b00627Search in Google Scholar PubMed
Berto, G.L., Arantes, V. (2019) Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int. J. Biol. Macromol. 127:637–648. https://doi.org/10.1016/j.ijbiomac.2019.01.169.10.1016/j.ijbiomac.2019.01.169Search in Google Scholar PubMed
Cazón, P., Velazquez, G., Vázquez, M. (2020) Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloides 99:105323. https://doi.org/10.1016/j.foodhyd.2019.105323.10.1016/j.foodhyd.2019.105323Search in Google Scholar
Chanda, S., Bajwa, D.S. (2021) A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Rev. Adv. Mater. Sci. 60:325–341. https://doi.org/10.1515/rams-2021-0023.10.1515/rams-2021-0023Search in Google Scholar
Claro, F.C., Matos, M., Jordão, C., Avelino, F., Lomonaco, D., Magalhães, W.L.E. (2019) Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology. Carbohydr. Polym. 218:307–314. https://doi.org/10.1016/j.carbpol.2019.04.089.10.1016/j.carbpol.2019.04.089Search in Google Scholar PubMed
Cruz, T.M., Mascarenhas, A.R.P., Scatolino, M.V., Faria, D.L., Matos, L.C., Duarte, P.J., Neto, J.M., Mendes, L.M., Tonoli, G.H.D. (2022) Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties. Nord. Pulp Pap. Res. J. 37(1). https://doi.org/10.1515/npprj-2021-0036.10.1515/npprj-2021-0036Search in Google Scholar
Desmaisons, J., Boutonnet, E., Rueff, M., Dufresne, A., Bras, J. (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr. Polym. 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032.10.1016/j.carbpol.2017.06.032Search in Google Scholar PubMed
Desmaisons, J., Gustafsson, E., Dufresne, A., Bras, J. (2018) Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose 25:7127–7142. https://doi.org/10.1007/s10570-018-2044-4.10.1007/s10570-018-2044-4Search in Google Scholar
Dias, M.C., Belgacem, M.N., Resende, J.V., Martins, M.A., Damásio, R.A.P., Tonoli, G.H.D., Ferreira, S.R. (2022) Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils. Int. J. Biol. Macromol. 209:413–425. https://doi.org/10.1016/j.ijbiomac.2022.04.005.10.1016/j.ijbiomac.2022.04.005Search in Google Scholar PubMed
Dias, M.C., Mendonça, M.C., Damásio, R.A.P., Zidanes, U.L., Mori, F.A., Ferreira, S.R., Tonoli, G.H.D. (2019) Influence of hemicellulose content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung 73:1035–1046. https://doi.org/10.1515/hf-2018-0230.10.1515/hf-2018-0230Search in Google Scholar
Dimic-Misic, K., Kostic, M., Obradovic, B., Kramar, A., Jovanovic, S., Stepanenko, D., Mitrovic-Dankulov, M., Lazovic, S., Johansson, L.S., Maloney, T., Gane, P. (2019) Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose 26:3845–3857. https://doi.org/10.1007/s10570-019-02269-4.10.1007/s10570-019-02269-4Search in Google Scholar
Espinosa, E., Rol, F., Bras, J., Rodríguez, A. (2020) Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose 27:10689–10705. https://doi.org/10.1007/s10570-020-03136-3.10.1007/s10570-020-03136-3Search in Google Scholar
Espitia, P.J.P., Du, W.X., Avena-Bustillos, R.J., Soares, N.F.F., Mchugh, T.H. (2014) Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocoll. 35:287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005.10.1016/j.foodhyd.2013.06.005Search in Google Scholar
Fakhouri, F.M., Costa, D., Yamashita, F., Martelli, S.M., Jesus, R.C., Alganer, K., Collares-Queiroz, F.P., Innocentini-Mei, L.H. (2013) Comparative study of processing methods for starch/gelatin films. Carbohydr. Polym. 95:681–689. https://doi.org/10.1016/j.carbpol.2013.03.027.10.1016/j.carbpol.2013.03.027Search in Google Scholar PubMed
Fonseca, A.S., Panthapulakkal, S., Konar, S.K., Sain, M., Bufalino, L., Raabe, J., Miranda, I.P.A., Martins, M.A., Tonoli, G.H.D. (2019) Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind. Crop. Prod. 131:203–212. https://doi.org/10.1016/j.indcrop.2019.01.046.10.1016/j.indcrop.2019.01.046Search in Google Scholar
From, M., Larsson, P.T., Andreasson, B., Medronho, B., Svanedal, I., Edlund, H., Norgren, M. (2020) Tuning the properties of regenerated cellulose: Effects of polarity and water solubility of the coagulation medium. Carbohydr. Polym. 236:116068. https://doi.org/10.1016/j.carbpol.2020.116068.10.1016/j.carbpol.2020.116068Search in Google Scholar PubMed
Fukuzumi, H., Saito, T., Isogai, A. (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr. Polym. 93:172–177. https://doi.org/10.1016/j.carbpol.2012.04.069.10.1016/j.carbpol.2012.04.069Search in Google Scholar PubMed
Grigatti, M., Montecchio, D., Francioso, O., Ciavatta, C. (2015) Structural and Thermal Investigation of Three Agricultural Biomasses Following Mild-NaOH Pretreatment to Increase Anaerobic Biodegradability. Waste Biomass Valoriz. 6:1135–1148. https://doi.org/10.1007/s12649-015-9423-y.10.1007/s12649-015-9423-ySearch in Google Scholar
Guan, Q.F., Yang, H.B., Han, Z.M., Zhou, L.C., Zhu, Y.B., Ling, Z.C., Jiang, H.B., Wang, P.F., Ma, T., Wu, H.A., Yu, S.H. (2020) Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6:eaaz1114. https://doi.org/10.1126/sciadv.aaz1114.10.1126/sciadv.aaz1114Search in Google Scholar PubMed PubMed Central
Guimarães, I.C., Reis, K.C., Menezes, E.G.T., Rodrigues, A.C., Silva, T.F., Oliveira, I.R.N., Boas, E.V.B. (2016) Cellulose microfibrillated suspension of carrots obtained by mechanical defibrillation and their application in edible starch films. Ind. Crop. Prod. 89:285–294. https://doi.org/10.1016/j.indcrop.2016.05.024.10.1016/j.indcrop.2016.05.024Search in Google Scholar
Hasan, I., Wang, J., Tajvidi, M. (2021) Tuning physical, mechanical and barrier properties of cellulose nanofibril films through film drying techniques coupled with thermal compression. Cellulose 28:11345–11366. https://doi.org/10.1007/s10570-021-04269-9.10.1007/s10570-021-04269-9Search in Google Scholar
Hashem, M., El-Bisi, M., Sharaf, S., Refaie, R. (2010) Pre-cationization of cotton fabrics: An effective alternative tool for activation of hydrogen peroxide bleaching process. Carbohydr. Polym. 79:533–540. https://doi.org/10.1016/j.carbpol.2009.08.038.10.1016/j.carbpol.2009.08.038Search in Google Scholar
Hou, G., Liu, Y., Li, D.Z.G., Xie, H., Fang, Z. (2020) Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films. ACS Appl. Mater. Interfaces 12:31998–32005. https://dx.doi.org/10.1021/acsami.0c08586.10.1021/acsami.0c08586Search in Google Scholar PubMed
Hsieh, M.C., Koga, H., Suganuma, K., Nogi, M. (2017) Hazy Transparent Cellulose Nanopaper. Sci. Rep. 7:41590. https://doi.org/10.1038/srep41590.10.1038/srep41590Search in Google Scholar PubMed PubMed Central
Jaiswal, A.K., Kumar, V., Khakalo, A., Lahtinen, P., Solin, K., Pere, J., Toivakka, M. (2021) Rheological behavior of high consistency enzymatically fibrillated cellulose suspensions. Cellulose 28:2087–2104. https://doi.org/10.1007/s10570-021-03688-y.10.1007/s10570-021-03688-ySearch in Google Scholar
Jin, K., Tang, Y., Liu, J., Wang, J., Ye, C. (2021) Nanofibrillated cellulose as coating agent for food packaging paper. Int. J. Biol. Macromol. 168:331–338. https://doi.org/10.1016/j.ijbiomac.2020.12.066.10.1016/j.ijbiomac.2020.12.066Search in Google Scholar PubMed
Jing, M., Zhang, L., Fan, Z., Liu, X., Wang, Y., Chuntai, L., Shen, C. (2022) Markedly improved hydrophobicity of cellulose film via a simple one-step aminosilane-assisted ball milling. Carbohydr. Polym. 275:119701. https://doi.org/10.1016/j.carbpol.2021.118701.10.1016/j.carbpol.2021.118701Search in Google Scholar PubMed
Kamel, R., El-Wakil, N.A., Dufresne, A., Elkasabgy, N.A. (2020) Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 163:1579–1590. https://doi.org/10.1016/j.ijbiomac.2020.07.242.10.1016/j.ijbiomac.2020.07.242Search in Google Scholar PubMed
Karina, M., Satoto, R., Abdullah, A.D., Yudianti, R. (2020) Properties of nanocellulose obtained from sugar palm (Arenga pinnata) fiber by acid hydrolysis in combination with high-pressure homogenization. Cellul. Chem. Technol. 54:33–38. http://dx.doi.org/10.35812/CelluloseChemTechnol.2020.54.04.10.35812/CelluloseChemTechnol.2020.54.04Search in Google Scholar
Kim, H.J., Roy, S., Rhim, J.W. (2021) Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J. Environ. Chem. Eng. 9:106043. https://doi.org/10.1016/j.jece.2021.106043.10.1016/j.jece.2021.106043Search in Google Scholar
Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T. (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm. 82:308–315. https://doi.org/10.1016/j.ejpb.2012.06.011.10.1016/j.ejpb.2012.06.011Search in Google Scholar PubMed
Kumar, V., Bollström, R., Yang, A., Chen, Q., Chen, G., Salminen, P., Bousfield, D., Toivakka, M. (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456. https://doi.org/10.1007/s10570-014-0357-5.10.1007/s10570-014-0357-5Search in Google Scholar
Kumar, V., Pathak, P., Bhardwaj, N.K. (2021) Micro-nanofibrillated cellulose preparation from bleached softwood pulp using chemo-refining approach and its evaluation as strength enhancer for paper properties. Appl. Nanosci. 11:101–115. https://doi.org/10.1007/s13204-020-01575-9.10.1007/s13204-020-01575-9Search in Google Scholar
Lago, C.R., Oliveira, A.L.M., Dias, M.C., Carvalho, E.E.N., Tonoli, G.H.D., Vilas Boas, E.V.B. (2020) Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: Mechanical and barrier properties. Ind. Crop. Prod. 148:112264. https://doi.org/10.1016/j.indcrop.2020.112264.10.1016/j.indcrop.2020.112264Search in Google Scholar
Li, Q., Wu, Y., Fang, R., Lei, C., Li, Y., Li, Y., Li, B., Pei, Y., Luo, X., Liu, S. (2021) Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends Food Sci. Technol., 110:573–583. https://doi.org/10.1016/j.tifs.2021.02.027.10.1016/j.tifs.2021.02.027Search in Google Scholar
Li, W., Wang, S., Wang, W., Qin, C., Wu, M. (2019) Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications. Cellulose 26:3271–3284. https://doi.org/10.1007/s10570-019-02270-x.10.1007/s10570-019-02270-xSearch in Google Scholar
Liang, C., Ruan, K., Zhang, Y., Gu, J. (2020) Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS Appl. Mater. Interfaces 12:18023–18031. https://dx.doi.org/10.1021/acsami.0c04482?ref=pdf.10.1021/acsami.0c04482Search in Google Scholar PubMed
Malucelli, L.C., Matos, M., Jordão, C., Lomonaco, D., Lacerda, L.G., Carvalho Filho, M.A.S., Magalhães, W.L.E. (2019) Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopapers. Cellulose 26:1667–1681. https://doi.org/10.1007/s10570-018-2161-0.10.1007/s10570-018-2161-0Search in Google Scholar
Martins, C.C.N., Dias, M.C., Mendonça, M.C., Durães, A.F.S., Silva, L.E., Félix, J.R., Damásio, R.A.P., Tonoli, G.H.D. (2021) Optimizing cellulose microfibrillation with NaOH pretreatments for unbleached Eucalyptus pulp. Cellulose 28:11519–11531. https://doi.org/10.1007/s10570-021-04221-x.10.1007/s10570-021-04221-xSearch in Google Scholar
Mascarenhas, A.R.P., Scatolino, M.V., Santos, A.A., Norcino, L.B., Duarte, P.J., Melo, R.R., Dias, M.C., Faria, C.E.T., Mendonça, M.C., Tonoli, G.H.D. (2022) Hydroxypropyl methylcellulose films reinforced with cellulose micro/nanofibrils: study of physical, optical, surface, barrier and mechanical properties. Nord. Pulp Pap. Res. J. 1–16. https://doi.org/10.1515/npprj-2022-0006.10.1515/npprj-2022-0006Search in Google Scholar
Melati, R.B., Shimizu, F.L., Oliveira, G., Pagnocca, F.C., Souza, W., Sant’Anna, C., Brienzo, M. (2019) Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. BioEnergy Res. 12:1–20. https://doi.org/10.1007/s12155-018-9941-0.10.1007/s12155-018-9941-0Search in Google Scholar
Moghaddam, M.K., Karimi, E. (2020) The effect of oxidative bleaching treatment on Yucca fiber for potential composite application. Cellulose 27:9383–9396. https://doi.org/10.1007/s10570-020-03433-x.10.1007/s10570-020-03433-xSearch in Google Scholar
Mohammed, N., Grishkewich, N., Tam, K.C. (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano. 5:623–658. https://doi.org/10.1039/C7EN01029J.10.1039/C7EN01029JSearch in Google Scholar
Mohtaschemi, M., Dimic-Misic, K., Puisto, A., Korhonen, M., Maloney, T., Paltakari, J., Alava, M.J. (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscosimeter. Cellulose 21:1305–1312. https://doi.org/10.1007/s10570-014-0235-1.10.1007/s10570-014-0235-1Search in Google Scholar
Mokhena, T.C., John, M.J. (2020) Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27:1149–1194. https://doi.org/10.1007/s10570-019-02889-w.10.1007/s10570-019-02889-wSearch in Google Scholar
Mokhena, T.C., Sadiku, E.R., Mochane, M.J., Ray, S.S., John, M.J., Mtibe, A. (2021) Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr. Polym. 273:118507. https://doi.org/10.1016/j.carbpol.2021.118507.10.1016/j.carbpol.2021.118507Search in Google Scholar PubMed
Moraes, J.O., Scheibe, A.S., Sereno, A., Laurindo, J.B. (2013) Scale-up of the production of cassava starch based films using tape casting. J. Food Eng. 119:800–808. https://doi.org/10.1016/j.jfoodeng.2013.07.009.10.1016/j.jfoodeng.2013.07.009Search in Google Scholar
Moser, C., Lindström, M.E., Henriksson, G. (2015) Toward Industrially Feasible Methods for Following the Process of Manufacturing Cellulose Nanofibers. BioResources 10:2360–2375. https://doi.org/10.15376/biores.10.2.2360-2375.10.15376/biores.10.2.2360-2375Search in Google Scholar
Nascimento, E.S., Barros, M.O., Cerqueira, M.A., Lima, H.L., Borges, M.F., Pastrana, L.M., Gama, F.M., Rosa, M.F., Azeredo, H.M.C., Gonçalves, C. (2021) All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag. Shelf Life 29:100715. https://doi.org/10.1016/j.fpsl.2021.100715.10.1016/j.fpsl.2021.100715Search in Google Scholar
Niu, X., Liu, Y., Fang, G., Huang, C., Rojas, O.J., Pan, H. (2018) Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules 19:4565–4575. https://doi.org/10.1021/acs.biomac.8b01252.10.1021/acs.biomac.8b01252Search in Google Scholar PubMed
Noorbakhsh-Soltani, S.M., Zerafat, M.M., Sabbaghi, S. (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym. 189:48–55. https://doi.org/10.1016/j.carbpol.2018.02.012.10.1016/j.carbpol.2018.02.012Search in Google Scholar PubMed
Noremylia, M.B., Hassan, M.Z., Ismail, Z. (2022) Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. Int. J. Biol. Macromol. 206:954–976. https://doi.org/10.1016/j.ijbiomac.2022.03.064.10.1016/j.ijbiomac.2022.03.064Search in Google Scholar PubMed
Osong, S.H., Norgren, S., Engstrand, P. (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:23–123. https://doi.org/10.1007/s10570-015-0798-5.10.1007/s10570-015-0798-5Search in Google Scholar
Perrin, L., Gillet, G., Gressin, L., Desobry, S. (2020) Interest of pickering emulsions for sustainable micro/nanocellulose in food and cosmetic applications. Polymers 12:2385. https://doi.org/10.3390/polym12102385.10.3390/polym12102385Search in Google Scholar PubMed PubMed Central
Qaseem, M.F., Shaheen, H., Wu, A.M. (2021) Cell wall hemicellulose for sustainable industrial utilization. Renew. Sustain. Energy Rev. 144:110996. https://doi.org/10.1016/j.rser.2021.110996.10.1016/j.rser.2021.110996Search in Google Scholar
Qu, J., Yuan, Z., Wang, C., Wang, A., Liu, X., Wei, B., Wen, Y. (2019) Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide. Cellulose 26:7769–7780. https://doi.org/10.1007/s10570-019-02655-y.10.1007/s10570-019-02655-ySearch in Google Scholar
R CORE TEAM (2020). R: A language and environment for statistical computing. https://www.R-project.org/. Acessado 15 dez 2020.Search in Google Scholar
Raj, P., Varanasi, S., Batchelor, W., Garnier, G. (2015) Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J. Colloid Interface Sci. 447:113–119. https://doi.org/10.1016/j.jcis.2015.01.019.10.1016/j.jcis.2015.01.019Search in Google Scholar PubMed
Rol, F., Banvillet, G., Meyer, V., Petit-Conil, M., Bras, J. (2018) Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. Journal of Material. Science 53:12604–12615. https://doi.org/10.1007/s10853-018-2414-1.10.1007/s10853-018-2414-1Search in Google Scholar
Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019) Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88:241–264. https://doi.org/10.1016/j.progpolymsci.2018.09.002.10.1016/j.progpolymsci.2018.09.002Search in Google Scholar
Rueden, C.T., Schindelin, J., Hiner, M.C., Dezonia, B.E., Walter, A.E., Arena, E.T., Eliceiri, K.W. (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18:529. https://doi.org/10.1186/s12859-017-1934-z.10.1186/s12859-017-1934-zSearch in Google Scholar PubMed PubMed Central
Santucci, B.S., Bras, J., Belgacem, M.N., Curvelo, A.A.S., Pimenta, M.T.B. (2016) Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind. Crop. Prod. 91:238–248. https://doi.org/10.1016/j.indcrop.2016.07.017.10.1016/j.indcrop.2016.07.017Search in Google Scholar
Shimizu, M., Saito, T., Isogai, A. (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J. Membr. Sci. 500:1–7. https://doi.org/10.1016/j.memsci.2015.11.002.10.1016/j.memsci.2015.11.002Search in Google Scholar
Sothornvit, R., Hong, Si., An, D.J., Rhim, J.W. (2010) Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. Lebensm.-Wiss. Technol. 43:279–284. https://doi.org/10.1016/j.lwt.2009.08.010.10.1016/j.lwt.2009.08.010Search in Google Scholar
Suhag, R., Kumar, N., Petkoska, A.T., Upadhyay, A. (2020) Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 136:109582. https://doi.org/10.1016/j.foodres.2020.109582.10.1016/j.foodres.2020.109582Search in Google Scholar PubMed
Sukmawan, R., Kusmono, Rahmanta, A.P., Saputri, L.H. (2022) The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite. Int. J. Adhes. Adhes. 114:103095. https://doi.org/10.1016/j.ijadhadh.2022.103095.10.1016/j.ijadhadh.2022.103095Search in Google Scholar
TAPPI Standard (2012) T 559 cm-12, Grease resistance test for paper and paperboard.Search in Google Scholar
TAPPI Standard (2013) T 410 om-08, Grammage of paper and paperboard.Search in Google Scholar
TAPPI Standard (2015) T 411 om-15, Thickness of paper, paperboard, and combined board.Search in Google Scholar
TAPPI Standard (2021a) T 249 cm-21, Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography.Search in Google Scholar
TAPPI Standard (2021b) T 222 om-21, Acid-soluble lignin in wood and pulp.Search in Google Scholar
TAPPI Standard (2021c) T 402 sp-21, Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products.Search in Google Scholar
Tayeb, A.H., Amini, E., Ghasemi, S., Tajvidi, M. (2018) Cellulose Nanomaterials – Binding Properties and Applications: A Review. Molecules 23:2684. http://dx.doi.org/10.3390/molecules23102684.10.3390/molecules23102684Search in Google Scholar PubMed PubMed Central
Teodoro, K.B.R., Sanfelice, R.C., Migliorini, F.L., Pavinatto, A., Facure, M.H.M., Correa, D.S. (2021) A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens. 6:2473–2496. https://doi.org/10.1021/acssensors.1c00473.10.1021/acssensors.1c00473Search in Google Scholar PubMed
Trovagunta, R., Kelley, S.S., Lavoine, N. (2021) Highlights on the mechanical pre-refining step in the production of wood cellulose nanofibrils. Cellulose 28:11329–11344. https://doi.org/10.1007/s10570-021-04226-6.10.1007/s10570-021-04226-6Search in Google Scholar
Turpeinen, T., Jäsberg, A., Haavisto, S., Liukkonen, J., Salmela, J., Koponen, A.I. (2020) Pipe rheology of microfibrillated cellulose suspensions. Cellulose 27:141–156. https://doi.org/10.1007/s10570-019-02784-4.10.1007/s10570-019-02784-4Search in Google Scholar
Tyagi, P., Hubbe, M.A., Lucia, L., Pal, L. (2018) High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose 25:3377–3391. https://doi.org/10.1007/s10570-018-1810-7.10.1007/s10570-018-1810-7Search in Google Scholar
Verker, R., Grossman, E., Eliaz, N. (2009) Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures. Acta Mater. 57:1112–1119. https://doi.org/doi:10.1016/j.actamat.2008.10.054.10.1016/j.actamat.2008.10.054Search in Google Scholar
Wang, J., Gardner, D.J., Stark, N.M., Bousfield, D.W., Tajvidi, M., Cai, Z. (2018) Moisture and Oxygen Barrier Properties of Cellulose Nanomaterial-Based Films. ACS Sustainable Chemistry &. Engineering 6:46–70. https://doi.org/10.1021/acssuschemeng.7b03523.10.1021/acssuschemeng.7b03523Search in Google Scholar
Wang, L., Chen, C., Wang, J., Gardner, D.J., Tajvidi, M. (2020) Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packag. Shelf Life 23:100464. https://doi.org/10.1016/j.fpsl.2020.100464.10.1016/j.fpsl.2020.100464Search in Google Scholar
Wang, Q., Zhu, J.Y., Considine, J.M. (2013) Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream. ACS Appl. Mater. Interfaces 5:7. https://doi.org/10.1021/am302967m.10.1021/am302967mSearch in Google Scholar PubMed
Wu, C., McClements, D.V., He, M., Zheng, L., Tian, T., Teng, F., Li, Y. (2021) Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments. Carbohydr. Polym. 255:117364. https://doi.org/10.1016/j.carbpol.2020.117364.10.1016/j.carbpol.2020.117364Search in Google Scholar PubMed
Xinping, L., Nan, W., Xin, Z., Hui, C., Yaoyu, W., Zhao, Z. (2020) Optical haze regulation of cellulose nanopaper via morphological tailoring and nano-hybridization of cellulose nanoparticles. Cellulose 27:1315–1326. https://doi.org/10.1007/s10570-019-02876-1.10.1007/s10570-019-02876-1Search in Google Scholar
Yang, X., Berthold, F., Berglund, L.A. (2019a) High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose. ACS Appl. Mater. Interfaces 11:10310–10319. http://dx.doi.org/10.1021/acsami.8b22134.10.1021/acsami.8b22134Search in Google Scholar PubMed
Yang, W., Jiao, L., Liu, W., Dai, H. (2019b) Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials 9:107. https://doi.org/10.3390/nano9010107.10.3390/nano9010107Search in Google Scholar PubMed PubMed Central
Yook, S., Park, H., Park, H., Lee, S.Y., Kwon, J., Youn, H.J. (2020) Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose 27:4509–4523. https://doi.org/10.1007/s10570-020-03061-5.10.1007/s10570-020-03061-5Search in Google Scholar
Zhang, B.X., Azuma, J.I., Uyama, H. (2015) Preparation and characterization of a transparent amorphous cellulose film. RSC Adv. 4:2900. https://doi.org/10.1039/C4RA14090G.10.1039/C4RA14090GSearch in Google Scholar
Zhang, W., Zhang, Y., Cao, J., Jiang, W. (2021) Improving the performance of edible food packaging films by using nanocellulose as an additive. Int. J. Biol. Macromol. 166:288–296. https://doi.org/10.1016/j.ijbiomac.2020.10.185.10.1016/j.ijbiomac.2020.10.185Search in Google Scholar PubMed
Zhou, X., Li, W., Mabon, R., Broadbelt, L.J. (2016) A critical review on hemicellulose pyrolysis. Energy Technol. 5:52–79. https://doi.org/10.1002/ente.201600327.10.1002/ente.201600327Search in Google Scholar
Žepič, V., Fabjan, E.S., Kasunic, M., Korosec, M., Hancic, A., Oven, P., Perse, L.S., Polijansek, I. (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68:657–667. https://doi.org/10.1515/hf-2013-0132.10.1515/hf-2013-0132Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Chemical pulping
- Among-family variations of direct measurement values for chemical and pulp properties in 4-year-old Eucalyptus camaldulensis half-sib families in Thailand
- Crosslinking of surface-sizing starch with cyclodextrin units enhances the performance of paper as essential oil carrier
- Modeling a continuous digester extraction screen zone with an approximated flow model
- Mechanical pulping
- Advanced energy-saving optimization strategy in thermo-mechanical pulping by machine learning approach
- Paper technology
- Alternative method for determining basis weight in papermaking by using an interactive soft sensor based on an artificial neural network model
- Fabrication of bio-based composite fillers based on the combination of crystallization and gelation
- Paper chemistry
- Kinetics of cellulose degradation in bamboo paper
- Influence of DNA as additive for market pulp on tissue paper
- Recycling
- The recyclability and printability of electrophotographic printed paper
- Nanotechnology
- Production of cellulose nanofibers and sugars using high dry matter feedstock
- Chemical technology/modifications
- Comparison of fibers obtained from industrial corncob residue by two delignification methods and their application in papermaking
- Miscellaneous
- Effects on hand-sheet paper properties of pH in deinking process
- Fibers pre-treatments with sodium silicate affect the properties of suspensions, films, and quality index of cellulose micro/nanofibrils
Articles in the same Issue
- Frontmatter
- Chemical pulping
- Among-family variations of direct measurement values for chemical and pulp properties in 4-year-old Eucalyptus camaldulensis half-sib families in Thailand
- Crosslinking of surface-sizing starch with cyclodextrin units enhances the performance of paper as essential oil carrier
- Modeling a continuous digester extraction screen zone with an approximated flow model
- Mechanical pulping
- Advanced energy-saving optimization strategy in thermo-mechanical pulping by machine learning approach
- Paper technology
- Alternative method for determining basis weight in papermaking by using an interactive soft sensor based on an artificial neural network model
- Fabrication of bio-based composite fillers based on the combination of crystallization and gelation
- Paper chemistry
- Kinetics of cellulose degradation in bamboo paper
- Influence of DNA as additive for market pulp on tissue paper
- Recycling
- The recyclability and printability of electrophotographic printed paper
- Nanotechnology
- Production of cellulose nanofibers and sugars using high dry matter feedstock
- Chemical technology/modifications
- Comparison of fibers obtained from industrial corncob residue by two delignification methods and their application in papermaking
- Miscellaneous
- Effects on hand-sheet paper properties of pH in deinking process
- Fibers pre-treatments with sodium silicate affect the properties of suspensions, films, and quality index of cellulose micro/nanofibrils