Home Fibers pre-treatments with sodium silicate affect the properties of suspensions, films, and quality index of cellulose micro/nanofibrils
Article
Licensed
Unlicensed Requires Authentication

Fibers pre-treatments with sodium silicate affect the properties of suspensions, films, and quality index of cellulose micro/nanofibrils

Effect of Na2SiO3
  • Adriano Reis Prazeres Mascarenhas ORCID logo EMAIL logo , Mário Vanoli Scatolino ORCID logo , Matheus Cordazzo Dias ORCID logo , Maria Alice Martins ORCID logo , Rafael Rodolfo de Melo ORCID logo , Renato Augusto Pereira Damásio ORCID logo , Maressa Carvalho Mendonça ORCID logo and Gustavo Henrique Denzin Tonoli ORCID logo
Published/Copyright: July 19, 2022
Become an author with De Gruyter Brill

Abstract

The characteristics of cellulose micro/nanofibrils (MFC/CNF) can be improved with pre-treatments of the original fibers. The present work is proposed to study pre-treatment with sodium silicate (Na2SiO3) on bleached fibers of Eucalyptus sp. (EUC) and Pinus sp. (PIN) and its effects on the quality index of MFC/CNF. Particle homogeneity, turbidity, and microstructure of the suspensions were evaluated. Similarly, the physical-mechanical, and barrier properties of the films were studied. With the results obtained for suspensions and films, the quality index (QI) was MFC/CNF calculated. The smallest particle dimension was observed for MFC/CNF of Pinus sp. with 10 % of Na2SiO3, as well as the lowest turbidity (∼350 NTU) was obtained for MFC/CNF of Pinus sp. with 5 % of Na2SiO3. The pre-treatments reduced the transparency of the films by ∼25 % for EUC and ∼20 % for PIN. The films presented a suitable barrier to UVC radiation, water vapor, and oil. The tensile strength of EUC and PIN films was increased by 20 % using 10 % of Na2SiO3. The same concentration of Na2SiO3 provided QI 70 for EUC MFC/CNF. The Na2SiO3 was efficient to obtain the MFC/CNF with interesting properties and suitable to generate films with parameters required for packaging.

Award Identifier / Grant number: 300985/2022-3

Funding statement: The research was funded by the National Council for Scientific and Technological Development (CNPq) (finance code 300985/2022-3).

Acknowledgments

We are especially grateful to the Program in Wood Science and Technology (PPGCTM) of the Federal University of Lavras (UFLA) for providing study material and infrastructure. We would also like to thank Embrapa Instrumentação and Klabin S. A. for the availability of inputs and equipment for the analysis required in this work. The authors are also grateful to the Coordination for the Improvement of Superior Education Personnel (CAPES) and Amapá Research Support Foundation (FAPEAP) for providing the research grant.

  1. Conflict of interest: The authors declare that there are no conflicts of interest.

References

Afsahi, G., Dimic-Misic, K., Gane, P., Budtova, T., Maloney, T., Vuorinen, T. (2018) The investigation of rheological and strength properties of NFC hydrogels and aerogels from hardwood pulp by short catalytic bleaching (Hcat). Cellulose 25:1637–1655. https://doi.org/10.1007/s10570-018-1678-6.10.1007/s10570-018-1678-6Search in Google Scholar

Albornoz-Palma, G., Ching, D., Valerio, O., Mendonça, R.T., Pereira, M. (2020) Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose 27:10631–10647. https://doi.org/10.1007/s10570-020-03304-5.10.1007/s10570-020-03304-5Search in Google Scholar

Amalraj, A., Gopi, S., Thomas, S., Haponiuk, J.T. (2018) Cellulose nanomaterials in biomedical, food, and Nutraceutical Applications: A Review. Macromol. Symp. 380:1800115. https://doi.org/10.1002/masy.201800115.10.1002/masy.201800115Search in Google Scholar

Amini, E., Hafez, I., Tajvidi, M., Bousfield, D.W. (2020) Cellulose and lignocellulose nanofibril suspensions and films: A comparison. Carbohydr. Polym. 250:117011. https://doi.org/10.1016/j.carbpol.2020.117011.10.1016/j.carbpol.2020.117011Search in Google Scholar PubMed

Ang, S., Haritos, V., Batchelor, W. (2019) Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose 26:4767–4786. https://doi.org/10.1007/s10570-019-02400-5.10.1007/s10570-019-02400-5Search in Google Scholar

ASTM Standard (2012) E-104-02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions.Search in Google Scholar

ASTM Standard (2016) ASTM E-96, Standard Test Methods for Water Vapor Transmission of Materials.Search in Google Scholar

ASTM Standard (2018) ASTM D882-18, Standard Test Methods for Tensile Properties of Thin Plastic Sheeting.Search in Google Scholar

Aulin, C., Yun, S.H., Wagberg, L., Lindström, T. (2009) Design of Highly Oleophobic Cellulose Surfaces from Structured Silicon Templates. Appl. Mater. Interfaces 1:2443–2452. https://doi.org/10.1021/am900394y.10.1021/am900394ySearch in Google Scholar PubMed

Balea, A., Fuente, E., Monte, M.C., Merayo, N., Campano, C., Negro, C., Blanco, A. (2020) Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules 25:256. http://dx.doi.org/10.3390/molecules25030526.10.3390/molecules25030526Search in Google Scholar PubMed PubMed Central

Banvillet, G., Depres, G., Belgacem, N., Bras, J. (2021a) Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production. Carbohydr. Polym. 255:117383. https://doi.org/10.1016/j.carbpol.2020.117383.10.1016/j.carbpol.2020.117383Search in Google Scholar PubMed

Banvillet, G., Gatt, E., Belgacem, N., Bras, J. (2021b) Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion. Bioresour. Technol. 327:124819. https://doi.org/10.1016/j.biortech.2021.124819.10.1016/j.biortech.2021.124819Search in Google Scholar PubMed

Bastante, C.C., Silva, N.H.C.S., Cardoso, L.C., Serrano, C.M., Ossa, E.J.M., Freire, C.S.R., Vilela, C. (2021) Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocoll. 117:106709. https://doi.org/10.1016/j.foodhyd.2021.106709.10.1016/j.foodhyd.2021.106709Search in Google Scholar

Bedane, A.H., Eic, M., Farmahini-Farahani, M., Xiao, H. (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J. Membr. Sci. 493:46–57. https://doi.org/10.1016/j.memsci.2015.06.009.10.1016/j.memsci.2015.06.009Search in Google Scholar

Bejoy, T., Midhun, C.R., Athira, K.B., Rubiyah, M.H., Jithin, J., Audrey, M., Drisko, G.L., Sanchez, C. (2018) Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 24:11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627.10.1021/acs.chemrev.7b00627Search in Google Scholar PubMed

Berto, G.L., Arantes, V. (2019) Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int. J. Biol. Macromol. 127:637–648. https://doi.org/10.1016/j.ijbiomac.2019.01.169.10.1016/j.ijbiomac.2019.01.169Search in Google Scholar PubMed

Cazón, P., Velazquez, G., Vázquez, M. (2020) Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloides 99:105323. https://doi.org/10.1016/j.foodhyd.2019.105323.10.1016/j.foodhyd.2019.105323Search in Google Scholar

Chanda, S., Bajwa, D.S. (2021) A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Rev. Adv. Mater. Sci. 60:325–341. https://doi.org/10.1515/rams-2021-0023.10.1515/rams-2021-0023Search in Google Scholar

Claro, F.C., Matos, M., Jordão, C., Avelino, F., Lomonaco, D., Magalhães, W.L.E. (2019) Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology. Carbohydr. Polym. 218:307–314. https://doi.org/10.1016/j.carbpol.2019.04.089.10.1016/j.carbpol.2019.04.089Search in Google Scholar PubMed

Cruz, T.M., Mascarenhas, A.R.P., Scatolino, M.V., Faria, D.L., Matos, L.C., Duarte, P.J., Neto, J.M., Mendes, L.M., Tonoli, G.H.D. (2022) Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties. Nord. Pulp Pap. Res. J. 37(1). https://doi.org/10.1515/npprj-2021-0036.10.1515/npprj-2021-0036Search in Google Scholar

Desmaisons, J., Boutonnet, E., Rueff, M., Dufresne, A., Bras, J. (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr. Polym. 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032.10.1016/j.carbpol.2017.06.032Search in Google Scholar PubMed

Desmaisons, J., Gustafsson, E., Dufresne, A., Bras, J. (2018) Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose 25:7127–7142. https://doi.org/10.1007/s10570-018-2044-4.10.1007/s10570-018-2044-4Search in Google Scholar

Dias, M.C., Belgacem, M.N., Resende, J.V., Martins, M.A., Damásio, R.A.P., Tonoli, G.H.D., Ferreira, S.R. (2022) Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils. Int. J. Biol. Macromol. 209:413–425. https://doi.org/10.1016/j.ijbiomac.2022.04.005.10.1016/j.ijbiomac.2022.04.005Search in Google Scholar PubMed

Dias, M.C., Mendonça, M.C., Damásio, R.A.P., Zidanes, U.L., Mori, F.A., Ferreira, S.R., Tonoli, G.H.D. (2019) Influence of hemicellulose content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung 73:1035–1046. https://doi.org/10.1515/hf-2018-0230.10.1515/hf-2018-0230Search in Google Scholar

Dimic-Misic, K., Kostic, M., Obradovic, B., Kramar, A., Jovanovic, S., Stepanenko, D., Mitrovic-Dankulov, M., Lazovic, S., Johansson, L.S., Maloney, T., Gane, P. (2019) Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose 26:3845–3857. https://doi.org/10.1007/s10570-019-02269-4.10.1007/s10570-019-02269-4Search in Google Scholar

Espinosa, E., Rol, F., Bras, J., Rodríguez, A. (2020) Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose 27:10689–10705. https://doi.org/10.1007/s10570-020-03136-3.10.1007/s10570-020-03136-3Search in Google Scholar

Espitia, P.J.P., Du, W.X., Avena-Bustillos, R.J., Soares, N.F.F., Mchugh, T.H. (2014) Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocoll. 35:287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005.10.1016/j.foodhyd.2013.06.005Search in Google Scholar

Fakhouri, F.M., Costa, D., Yamashita, F., Martelli, S.M., Jesus, R.C., Alganer, K., Collares-Queiroz, F.P., Innocentini-Mei, L.H. (2013) Comparative study of processing methods for starch/gelatin films. Carbohydr. Polym. 95:681–689. https://doi.org/10.1016/j.carbpol.2013.03.027.10.1016/j.carbpol.2013.03.027Search in Google Scholar PubMed

Fonseca, A.S., Panthapulakkal, S., Konar, S.K., Sain, M., Bufalino, L., Raabe, J., Miranda, I.P.A., Martins, M.A., Tonoli, G.H.D. (2019) Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind. Crop. Prod. 131:203–212. https://doi.org/10.1016/j.indcrop.2019.01.046.10.1016/j.indcrop.2019.01.046Search in Google Scholar

From, M., Larsson, P.T., Andreasson, B., Medronho, B., Svanedal, I., Edlund, H., Norgren, M. (2020) Tuning the properties of regenerated cellulose: Effects of polarity and water solubility of the coagulation medium. Carbohydr. Polym. 236:116068. https://doi.org/10.1016/j.carbpol.2020.116068.10.1016/j.carbpol.2020.116068Search in Google Scholar PubMed

Fukuzumi, H., Saito, T., Isogai, A. (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr. Polym. 93:172–177. https://doi.org/10.1016/j.carbpol.2012.04.069.10.1016/j.carbpol.2012.04.069Search in Google Scholar PubMed

Grigatti, M., Montecchio, D., Francioso, O., Ciavatta, C. (2015) Structural and Thermal Investigation of Three Agricultural Biomasses Following Mild-NaOH Pretreatment to Increase Anaerobic Biodegradability. Waste Biomass Valoriz. 6:1135–1148. https://doi.org/10.1007/s12649-015-9423-y.10.1007/s12649-015-9423-ySearch in Google Scholar

Guan, Q.F., Yang, H.B., Han, Z.M., Zhou, L.C., Zhu, Y.B., Ling, Z.C., Jiang, H.B., Wang, P.F., Ma, T., Wu, H.A., Yu, S.H. (2020) Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6:eaaz1114. https://doi.org/10.1126/sciadv.aaz1114.10.1126/sciadv.aaz1114Search in Google Scholar PubMed PubMed Central

Guimarães, I.C., Reis, K.C., Menezes, E.G.T., Rodrigues, A.C., Silva, T.F., Oliveira, I.R.N., Boas, E.V.B. (2016) Cellulose microfibrillated suspension of carrots obtained by mechanical defibrillation and their application in edible starch films. Ind. Crop. Prod. 89:285–294. https://doi.org/10.1016/j.indcrop.2016.05.024.10.1016/j.indcrop.2016.05.024Search in Google Scholar

Hasan, I., Wang, J., Tajvidi, M. (2021) Tuning physical, mechanical and barrier properties of cellulose nanofibril films through film drying techniques coupled with thermal compression. Cellulose 28:11345–11366. https://doi.org/10.1007/s10570-021-04269-9.10.1007/s10570-021-04269-9Search in Google Scholar

Hashem, M., El-Bisi, M., Sharaf, S., Refaie, R. (2010) Pre-cationization of cotton fabrics: An effective alternative tool for activation of hydrogen peroxide bleaching process. Carbohydr. Polym. 79:533–540. https://doi.org/10.1016/j.carbpol.2009.08.038.10.1016/j.carbpol.2009.08.038Search in Google Scholar

Hou, G., Liu, Y., Li, D.Z.G., Xie, H., Fang, Z. (2020) Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films. ACS Appl. Mater. Interfaces 12:31998–32005. https://dx.doi.org/10.1021/acsami.0c08586.10.1021/acsami.0c08586Search in Google Scholar PubMed

Hsieh, M.C., Koga, H., Suganuma, K., Nogi, M. (2017) Hazy Transparent Cellulose Nanopaper. Sci. Rep. 7:41590. https://doi.org/10.1038/srep41590.10.1038/srep41590Search in Google Scholar PubMed PubMed Central

Jaiswal, A.K., Kumar, V., Khakalo, A., Lahtinen, P., Solin, K., Pere, J., Toivakka, M. (2021) Rheological behavior of high consistency enzymatically fibrillated cellulose suspensions. Cellulose 28:2087–2104. https://doi.org/10.1007/s10570-021-03688-y.10.1007/s10570-021-03688-ySearch in Google Scholar

Jin, K., Tang, Y., Liu, J., Wang, J., Ye, C. (2021) Nanofibrillated cellulose as coating agent for food packaging paper. Int. J. Biol. Macromol. 168:331–338. https://doi.org/10.1016/j.ijbiomac.2020.12.066.10.1016/j.ijbiomac.2020.12.066Search in Google Scholar PubMed

Jing, M., Zhang, L., Fan, Z., Liu, X., Wang, Y., Chuntai, L., Shen, C. (2022) Markedly improved hydrophobicity of cellulose film via a simple one-step aminosilane-assisted ball milling. Carbohydr. Polym. 275:119701. https://doi.org/10.1016/j.carbpol.2021.118701.10.1016/j.carbpol.2021.118701Search in Google Scholar PubMed

Kamel, R., El-Wakil, N.A., Dufresne, A., Elkasabgy, N.A. (2020) Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 163:1579–1590. https://doi.org/10.1016/j.ijbiomac.2020.07.242.10.1016/j.ijbiomac.2020.07.242Search in Google Scholar PubMed

Karina, M., Satoto, R., Abdullah, A.D., Yudianti, R. (2020) Properties of nanocellulose obtained from sugar palm (Arenga pinnata) fiber by acid hydrolysis in combination with high-pressure homogenization. Cellul. Chem. Technol. 54:33–38. http://dx.doi.org/10.35812/CelluloseChemTechnol.2020.54.04.10.35812/CelluloseChemTechnol.2020.54.04Search in Google Scholar

Kim, H.J., Roy, S., Rhim, J.W. (2021) Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J. Environ. Chem. Eng. 9:106043. https://doi.org/10.1016/j.jece.2021.106043.10.1016/j.jece.2021.106043Search in Google Scholar

Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T. (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm. 82:308–315. https://doi.org/10.1016/j.ejpb.2012.06.011.10.1016/j.ejpb.2012.06.011Search in Google Scholar PubMed

Kumar, V., Bollström, R., Yang, A., Chen, Q., Chen, G., Salminen, P., Bousfield, D., Toivakka, M. (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456. https://doi.org/10.1007/s10570-014-0357-5.10.1007/s10570-014-0357-5Search in Google Scholar

Kumar, V., Pathak, P., Bhardwaj, N.K. (2021) Micro-nanofibrillated cellulose preparation from bleached softwood pulp using chemo-refining approach and its evaluation as strength enhancer for paper properties. Appl. Nanosci. 11:101–115. https://doi.org/10.1007/s13204-020-01575-9.10.1007/s13204-020-01575-9Search in Google Scholar

Lago, C.R., Oliveira, A.L.M., Dias, M.C., Carvalho, E.E.N., Tonoli, G.H.D., Vilas Boas, E.V.B. (2020) Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: Mechanical and barrier properties. Ind. Crop. Prod. 148:112264. https://doi.org/10.1016/j.indcrop.2020.112264.10.1016/j.indcrop.2020.112264Search in Google Scholar

Li, Q., Wu, Y., Fang, R., Lei, C., Li, Y., Li, Y., Li, B., Pei, Y., Luo, X., Liu, S. (2021) Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends Food Sci. Technol., 110:573–583. https://doi.org/10.1016/j.tifs.2021.02.027.10.1016/j.tifs.2021.02.027Search in Google Scholar

Li, W., Wang, S., Wang, W., Qin, C., Wu, M. (2019) Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications. Cellulose 26:3271–3284. https://doi.org/10.1007/s10570-019-02270-x.10.1007/s10570-019-02270-xSearch in Google Scholar

Liang, C., Ruan, K., Zhang, Y., Gu, J. (2020) Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS Appl. Mater. Interfaces 12:18023–18031. https://dx.doi.org/10.1021/acsami.0c04482?ref=pdf.10.1021/acsami.0c04482Search in Google Scholar PubMed

Malucelli, L.C., Matos, M., Jordão, C., Lomonaco, D., Lacerda, L.G., Carvalho Filho, M.A.S., Magalhães, W.L.E. (2019) Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopapers. Cellulose 26:1667–1681. https://doi.org/10.1007/s10570-018-2161-0.10.1007/s10570-018-2161-0Search in Google Scholar

Martins, C.C.N., Dias, M.C., Mendonça, M.C., Durães, A.F.S., Silva, L.E., Félix, J.R., Damásio, R.A.P., Tonoli, G.H.D. (2021) Optimizing cellulose microfibrillation with NaOH pretreatments for unbleached Eucalyptus pulp. Cellulose 28:11519–11531. https://doi.org/10.1007/s10570-021-04221-x.10.1007/s10570-021-04221-xSearch in Google Scholar

Mascarenhas, A.R.P., Scatolino, M.V., Santos, A.A., Norcino, L.B., Duarte, P.J., Melo, R.R., Dias, M.C., Faria, C.E.T., Mendonça, M.C., Tonoli, G.H.D. (2022) Hydroxypropyl methylcellulose films reinforced with cellulose micro/nanofibrils: study of physical, optical, surface, barrier and mechanical properties. Nord. Pulp Pap. Res. J. 1–16. https://doi.org/10.1515/npprj-2022-0006.10.1515/npprj-2022-0006Search in Google Scholar

Melati, R.B., Shimizu, F.L., Oliveira, G., Pagnocca, F.C., Souza, W., Sant’Anna, C., Brienzo, M. (2019) Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. BioEnergy Res. 12:1–20. https://doi.org/10.1007/s12155-018-9941-0.10.1007/s12155-018-9941-0Search in Google Scholar

Moghaddam, M.K., Karimi, E. (2020) The effect of oxidative bleaching treatment on Yucca fiber for potential composite application. Cellulose 27:9383–9396. https://doi.org/10.1007/s10570-020-03433-x.10.1007/s10570-020-03433-xSearch in Google Scholar

Mohammed, N., Grishkewich, N., Tam, K.C. (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano. 5:623–658. https://doi.org/10.1039/C7EN01029J.10.1039/C7EN01029JSearch in Google Scholar

Mohtaschemi, M., Dimic-Misic, K., Puisto, A., Korhonen, M., Maloney, T., Paltakari, J., Alava, M.J. (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscosimeter. Cellulose 21:1305–1312. https://doi.org/10.1007/s10570-014-0235-1.10.1007/s10570-014-0235-1Search in Google Scholar

Mokhena, T.C., John, M.J. (2020) Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27:1149–1194. https://doi.org/10.1007/s10570-019-02889-w.10.1007/s10570-019-02889-wSearch in Google Scholar

Mokhena, T.C., Sadiku, E.R., Mochane, M.J., Ray, S.S., John, M.J., Mtibe, A. (2021) Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr. Polym. 273:118507. https://doi.org/10.1016/j.carbpol.2021.118507.10.1016/j.carbpol.2021.118507Search in Google Scholar PubMed

Moraes, J.O., Scheibe, A.S., Sereno, A., Laurindo, J.B. (2013) Scale-up of the production of cassava starch based films using tape casting. J. Food Eng. 119:800–808. https://doi.org/10.1016/j.jfoodeng.2013.07.009.10.1016/j.jfoodeng.2013.07.009Search in Google Scholar

Moser, C., Lindström, M.E., Henriksson, G. (2015) Toward Industrially Feasible Methods for Following the Process of Manufacturing Cellulose Nanofibers. BioResources 10:2360–2375. https://doi.org/10.15376/biores.10.2.2360-2375.10.15376/biores.10.2.2360-2375Search in Google Scholar

Nascimento, E.S., Barros, M.O., Cerqueira, M.A., Lima, H.L., Borges, M.F., Pastrana, L.M., Gama, F.M., Rosa, M.F., Azeredo, H.M.C., Gonçalves, C. (2021) All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag. Shelf Life 29:100715. https://doi.org/10.1016/j.fpsl.2021.100715.10.1016/j.fpsl.2021.100715Search in Google Scholar

Niu, X., Liu, Y., Fang, G., Huang, C., Rojas, O.J., Pan, H. (2018) Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules 19:4565–4575. https://doi.org/10.1021/acs.biomac.8b01252.10.1021/acs.biomac.8b01252Search in Google Scholar PubMed

Noorbakhsh-Soltani, S.M., Zerafat, M.M., Sabbaghi, S. (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym. 189:48–55. https://doi.org/10.1016/j.carbpol.2018.02.012.10.1016/j.carbpol.2018.02.012Search in Google Scholar PubMed

Noremylia, M.B., Hassan, M.Z., Ismail, Z. (2022) Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. Int. J. Biol. Macromol. 206:954–976. https://doi.org/10.1016/j.ijbiomac.2022.03.064.10.1016/j.ijbiomac.2022.03.064Search in Google Scholar PubMed

Osong, S.H., Norgren, S., Engstrand, P. (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:23–123. https://doi.org/10.1007/s10570-015-0798-5.10.1007/s10570-015-0798-5Search in Google Scholar

Perrin, L., Gillet, G., Gressin, L., Desobry, S. (2020) Interest of pickering emulsions for sustainable micro/nanocellulose in food and cosmetic applications. Polymers 12:2385. https://doi.org/10.3390/polym12102385.10.3390/polym12102385Search in Google Scholar PubMed PubMed Central

Qaseem, M.F., Shaheen, H., Wu, A.M. (2021) Cell wall hemicellulose for sustainable industrial utilization. Renew. Sustain. Energy Rev. 144:110996. https://doi.org/10.1016/j.rser.2021.110996.10.1016/j.rser.2021.110996Search in Google Scholar

Qu, J., Yuan, Z., Wang, C., Wang, A., Liu, X., Wei, B., Wen, Y. (2019) Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide. Cellulose 26:7769–7780. https://doi.org/10.1007/s10570-019-02655-y.10.1007/s10570-019-02655-ySearch in Google Scholar

R CORE TEAM (2020). R: A language and environment for statistical computing. https://www.R-project.org/. Acessado 15 dez 2020.Search in Google Scholar

Raj, P., Varanasi, S., Batchelor, W., Garnier, G. (2015) Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J. Colloid Interface Sci. 447:113–119. https://doi.org/10.1016/j.jcis.2015.01.019.10.1016/j.jcis.2015.01.019Search in Google Scholar PubMed

Rol, F., Banvillet, G., Meyer, V., Petit-Conil, M., Bras, J. (2018) Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. Journal of Material. Science 53:12604–12615. https://doi.org/10.1007/s10853-018-2414-1.10.1007/s10853-018-2414-1Search in Google Scholar

Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019) Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88:241–264. https://doi.org/10.1016/j.progpolymsci.2018.09.002.10.1016/j.progpolymsci.2018.09.002Search in Google Scholar

Rueden, C.T., Schindelin, J., Hiner, M.C., Dezonia, B.E., Walter, A.E., Arena, E.T., Eliceiri, K.W. (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18:529. https://doi.org/10.1186/s12859-017-1934-z.10.1186/s12859-017-1934-zSearch in Google Scholar PubMed PubMed Central

Santucci, B.S., Bras, J., Belgacem, M.N., Curvelo, A.A.S., Pimenta, M.T.B. (2016) Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind. Crop. Prod. 91:238–248. https://doi.org/10.1016/j.indcrop.2016.07.017.10.1016/j.indcrop.2016.07.017Search in Google Scholar

Shimizu, M., Saito, T., Isogai, A. (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J. Membr. Sci. 500:1–7. https://doi.org/10.1016/j.memsci.2015.11.002.10.1016/j.memsci.2015.11.002Search in Google Scholar

Sothornvit, R., Hong, Si., An, D.J., Rhim, J.W. (2010) Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. Lebensm.-Wiss. Technol. 43:279–284. https://doi.org/10.1016/j.lwt.2009.08.010.10.1016/j.lwt.2009.08.010Search in Google Scholar

Suhag, R., Kumar, N., Petkoska, A.T., Upadhyay, A. (2020) Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 136:109582. https://doi.org/10.1016/j.foodres.2020.109582.10.1016/j.foodres.2020.109582Search in Google Scholar PubMed

Sukmawan, R., Kusmono, Rahmanta, A.P., Saputri, L.H. (2022) The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite. Int. J. Adhes. Adhes. 114:103095. https://doi.org/10.1016/j.ijadhadh.2022.103095.10.1016/j.ijadhadh.2022.103095Search in Google Scholar

TAPPI Standard (2012) T 559 cm-12, Grease resistance test for paper and paperboard.Search in Google Scholar

TAPPI Standard (2013) T 410 om-08, Grammage of paper and paperboard.Search in Google Scholar

TAPPI Standard (2015) T 411 om-15, Thickness of paper, paperboard, and combined board.Search in Google Scholar

TAPPI Standard (2021a) T 249 cm-21, Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography.Search in Google Scholar

TAPPI Standard (2021b) T 222 om-21, Acid-soluble lignin in wood and pulp.Search in Google Scholar

TAPPI Standard (2021c) T 402 sp-21, Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products.Search in Google Scholar

Tayeb, A.H., Amini, E., Ghasemi, S., Tajvidi, M. (2018) Cellulose Nanomaterials – Binding Properties and Applications: A Review. Molecules 23:2684. http://dx.doi.org/10.3390/molecules23102684.10.3390/molecules23102684Search in Google Scholar PubMed PubMed Central

Teodoro, K.B.R., Sanfelice, R.C., Migliorini, F.L., Pavinatto, A., Facure, M.H.M., Correa, D.S. (2021) A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens. 6:2473–2496. https://doi.org/10.1021/acssensors.1c00473.10.1021/acssensors.1c00473Search in Google Scholar PubMed

Trovagunta, R., Kelley, S.S., Lavoine, N. (2021) Highlights on the mechanical pre-refining step in the production of wood cellulose nanofibrils. Cellulose 28:11329–11344. https://doi.org/10.1007/s10570-021-04226-6.10.1007/s10570-021-04226-6Search in Google Scholar

Turpeinen, T., Jäsberg, A., Haavisto, S., Liukkonen, J., Salmela, J., Koponen, A.I. (2020) Pipe rheology of microfibrillated cellulose suspensions. Cellulose 27:141–156. https://doi.org/10.1007/s10570-019-02784-4.10.1007/s10570-019-02784-4Search in Google Scholar

Tyagi, P., Hubbe, M.A., Lucia, L., Pal, L. (2018) High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose 25:3377–3391. https://doi.org/10.1007/s10570-018-1810-7.10.1007/s10570-018-1810-7Search in Google Scholar

Verker, R., Grossman, E., Eliaz, N. (2009) Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures. Acta Mater. 57:1112–1119. https://doi.org/doi:10.1016/j.actamat.2008.10.054.10.1016/j.actamat.2008.10.054Search in Google Scholar

Wang, J., Gardner, D.J., Stark, N.M., Bousfield, D.W., Tajvidi, M., Cai, Z. (2018) Moisture and Oxygen Barrier Properties of Cellulose Nanomaterial-Based Films. ACS Sustainable Chemistry &. Engineering 6:46–70. https://doi.org/10.1021/acssuschemeng.7b03523.10.1021/acssuschemeng.7b03523Search in Google Scholar

Wang, L., Chen, C., Wang, J., Gardner, D.J., Tajvidi, M. (2020) Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packag. Shelf Life 23:100464. https://doi.org/10.1016/j.fpsl.2020.100464.10.1016/j.fpsl.2020.100464Search in Google Scholar

Wang, Q., Zhu, J.Y., Considine, J.M. (2013) Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream. ACS Appl. Mater. Interfaces 5:7. https://doi.org/10.1021/am302967m.10.1021/am302967mSearch in Google Scholar PubMed

Wu, C., McClements, D.V., He, M., Zheng, L., Tian, T., Teng, F., Li, Y. (2021) Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments. Carbohydr. Polym. 255:117364. https://doi.org/10.1016/j.carbpol.2020.117364.10.1016/j.carbpol.2020.117364Search in Google Scholar PubMed

Xinping, L., Nan, W., Xin, Z., Hui, C., Yaoyu, W., Zhao, Z. (2020) Optical haze regulation of cellulose nanopaper via morphological tailoring and nano-hybridization of cellulose nanoparticles. Cellulose 27:1315–1326. https://doi.org/10.1007/s10570-019-02876-1.10.1007/s10570-019-02876-1Search in Google Scholar

Yang, X., Berthold, F., Berglund, L.A. (2019a) High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose. ACS Appl. Mater. Interfaces 11:10310–10319. http://dx.doi.org/10.1021/acsami.8b22134.10.1021/acsami.8b22134Search in Google Scholar PubMed

Yang, W., Jiao, L., Liu, W., Dai, H. (2019b) Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials 9:107. https://doi.org/10.3390/nano9010107.10.3390/nano9010107Search in Google Scholar PubMed PubMed Central

Yook, S., Park, H., Park, H., Lee, S.Y., Kwon, J., Youn, H.J. (2020) Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose 27:4509–4523. https://doi.org/10.1007/s10570-020-03061-5.10.1007/s10570-020-03061-5Search in Google Scholar

Zhang, B.X., Azuma, J.I., Uyama, H. (2015) Preparation and characterization of a transparent amorphous cellulose film. RSC Adv. 4:2900. https://doi.org/10.1039/C4RA14090G.10.1039/C4RA14090GSearch in Google Scholar

Zhang, W., Zhang, Y., Cao, J., Jiang, W. (2021) Improving the performance of edible food packaging films by using nanocellulose as an additive. Int. J. Biol. Macromol. 166:288–296. https://doi.org/10.1016/j.ijbiomac.2020.10.185.10.1016/j.ijbiomac.2020.10.185Search in Google Scholar PubMed

Zhou, X., Li, W., Mabon, R., Broadbelt, L.J. (2016) A critical review on hemicellulose pyrolysis. Energy Technol. 5:52–79. https://doi.org/10.1002/ente.201600327.10.1002/ente.201600327Search in Google Scholar

Žepič, V., Fabjan, E.S., Kasunic, M., Korosec, M., Hancic, A., Oven, P., Perse, L.S., Polijansek, I. (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68:657–667. https://doi.org/10.1515/hf-2013-0132.10.1515/hf-2013-0132Search in Google Scholar

Received: 2022-04-21
Accepted: 2022-07-08
Published Online: 2022-07-19
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/npprj-2022-0037/html
Scroll to top button