Home The retinal circuitry for magnetoreception in migratory birds
Article
Licensed
Unlicensed Requires Authentication

The retinal circuitry for magnetoreception in migratory birds

  • Pranav K. Seth

    Pranav K. Seth studied Zoology at the University of Delhi, India. He did his post-graduation in Biomedical Sciences and Animal Behavior at the University of Delhi and Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India. He is currently doing his PhD thesis under Prof. Dr. Henrik Mouritsen on determining the role of European robin Cry4 in magnetoreception using molecular techniques.

    ORCID logo
    , Vaishnavi Balaji

    Vaishnavi Balaji studied Biotechnology at Manipal University, India, and received an Erasmus Mundus Joint Masters in Neuroscience from Vrije Universiteit, Amsterdam and University of Bordeaux. She joined the Animal Navigation group as a PhD student of apl. Prof. Dr. Karin Dedek to identify and characterize the retinal circuits involved in magnetoreception in European robins.

    and Karin Dedek

    Karin Dedek has been an apl. Professor in the Animal Navigation group (Prof. Henrik Mouritsen) at the University of Oldenburg since 2015. She obtained her PhD when working on ion channels with Prof. Dr. Dr. Thomas Jentsch at the Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany, and was a postdoctoral fellow at the University of Oldenburg, Oldenburg, Germany (Neurobiology group, Prof. Reto Weiler) and Weill Medical College of Cornell University, New York, USA (Prof. Sheila Nirenberg) before becoming deputy head of the Neurobiology group from 2010 to 2015.

    ORCID logo EMAIL logo
Published/Copyright: June 30, 2021
Become an author with De Gruyter Brill

Abstract

Night-migratory birds use the Earth’s magnetic field to determine the direction in which they want to migrate. Many studies suggest that this “magnetic compass sense” is light dependent and mediated by blue light sensors, called cryptochromes, which are expressed in the retina of night-migratory birds. In this review, we summarize the evidence that the avian retina processes not only visual information but also magnetic compass information. We also review the current knowledge on cryptochrome expression in the bird retina and highlight open questions which we aim to address within the framework of SFB 1372 Magnetoreception and Navigation in Vertebrates.

Zusammenfassung

Nachtziehende Vögel nutzen das Magnetfeld der Erde, um die Richtung zu bestimmen, in die sie ziehen möchten. Viele Studien legen nahe, dass dieser Magnet-Kompasssinn lichtabhängig ist und durch Blaulicht-Sensoren, sogenannte Cryptochrom-Moleküle, vermittelt wird, die in der Retina von nachtziehenden Vögeln gefunden wurden. In diesem Übersichtsartikel fassen wir das aktuelle Wissen über die Cryptochrom-Expression in der Netzhaut von Vögeln zusammen und heben offene Fragen hervor, die wir im Rahmen des SFB 1372 Magnetoreception and Navigation in Vertebrates beantworten möchten.


Corresponding author: Karin Dedek, Animal Navigation, Institute of Biology and Environmental Sciences, University of Oldenburg, 26111 Oldenburg, Germany, E-mail:
Pranav K. Seth and Vaishnavi Balaji contributed equally to this work.

Award Identifier / Grant number: 395940726 – SFB1372

Award Identifier / Grant number: RTG 1885/1-2

Über die Autoren

Pranav K. Seth

Pranav K. Seth studied Zoology at the University of Delhi, India. He did his post-graduation in Biomedical Sciences and Animal Behavior at the University of Delhi and Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India. He is currently doing his PhD thesis under Prof. Dr. Henrik Mouritsen on determining the role of European robin Cry4 in magnetoreception using molecular techniques.

Vaishnavi Balaji

Vaishnavi Balaji studied Biotechnology at Manipal University, India, and received an Erasmus Mundus Joint Masters in Neuroscience from Vrije Universiteit, Amsterdam and University of Bordeaux. She joined the Animal Navigation group as a PhD student of apl. Prof. Dr. Karin Dedek to identify and characterize the retinal circuits involved in magnetoreception in European robins.

Karin Dedek

Karin Dedek has been an apl. Professor in the Animal Navigation group (Prof. Henrik Mouritsen) at the University of Oldenburg since 2015. She obtained her PhD when working on ion channels with Prof. Dr. Dr. Thomas Jentsch at the Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany, and was a postdoctoral fellow at the University of Oldenburg, Oldenburg, Germany (Neurobiology group, Prof. Reto Weiler) and Weill Medical College of Cornell University, New York, USA (Prof. Sheila Nirenberg) before becoming deputy head of the Neurobiology group from 2010 to 2015.

Acknowledgments

The authors would like to thank Prof. Ilia Solov’yov for help with the schematic in Figure 1A.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the Deutsche Forschungsgemeinschaft, SFB1372: Magnetoreception and navigation in vertebrates: from biophysics to brain and behavior. Grant number: 395940726 to KD.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alert, B., Michalik, A., Helduser, S., Mouritsen, H., and Güntürkün, O. (2015). Perceptual strategies of pigeons to detect a rotational centre – a hint for star compass learning? PloS One 10, e0119919, https://doi.org/10.1371/journal.pone.0119919.Search in Google Scholar PubMed PubMed Central

Åkesson, S. (2003). Avian long-distance navigation: Experiments with migratory birds. Avian Migration (Berlin, Heidelberg: Springer), pp. 471–492, https://doi.org/10.1007/978-3-662-05957-9_33.Search in Google Scholar

Baron, J., Pinto, L., Dias, M.O., Lima, B., and Neuenschwander, S. (2007). Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl: Component selectivity in owl visual wulst. Eur. J. Neurosci. 26, 1950–1968, https://doi.org/10.1111/j.1460-9568.2007.05783.x.Search in Google Scholar PubMed

Bartölke, R., Behrmann, H., Görtemaker, K., Yee, C., Xu, J., Behrmann, E., and Koch, K.W. (2021). The secrets of cryptochromes: Photoreceptors, clock proteins, and magnetic sensors. Neuroforum 27, 151–157.10.1515/nf-2021-0006Search in Google Scholar

Bolte, P., Bleibaum, F., Einwich, A., Günther, A., Liedvogel, M., Heyers, D., Depping, A., Wöhlbrand, L., Rabus, R., Janssen‐Bienhold, U., et al.. (2016). Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PloS One 11, e0147819, https://doi.org/10.1371/journal.pone.0147819.Search in Google Scholar PubMed PubMed Central

Bolte, P., Einwich, A., Seth, P.K., Chetverikova, R., Heyers, D., Wojahn, I., Janssen-Bienhold, U., Feederle, R., Hore, P.J., and Dedek, K., et al.. (2021). Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: No signs of light-dependent activation. Ethol. Ecol. Evol. 33, 248–272, https://doi.org/10.1080/03949370.2020.1870571.Search in Google Scholar

Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.-O., van der Horst, G.T.J., Batschauer, A., and Ahmad, M. (2011). The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364, https://doi.org/10.1146/annurev-arplant-042110-103759.Search in Google Scholar PubMed

Cochran, W.W., Mouritsen, H., and Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Sci. New Ser. 304, 405–408, https://doi.org/10.1126/science.1095844.Search in Google Scholar PubMed

Einwich, A., Dedek, K., Seth, P.K., Laubinger, S., and Mouritsen, H. (2020). A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci. Rep. 10, 15794, https://doi.org/10.1038/s41598-020-72579-2.Search in Google Scholar PubMed PubMed Central

Emlen, S.T. (1967). Migratory orientation in the indigo bunting, Passerina cyanea: Part I: Evidence for use of celestial cues. Auk 84, 309–342, https://doi.org/10.2307/4083084.Search in Google Scholar

Feng, S., Stiller, J., Deng, Y., Armstrong, J., Fang, Q., Reeve, A.H., Xie, D., Chen, G., Guo, C., Faircloth, B.C., et al.. (2020). Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257, https://doi.org/10.1038/s41586-020-2873-9.Search in Google Scholar PubMed PubMed Central

Field, G.D., Sher, A., Gauthier, J.L., Greschner, M., Shlens, J., Litke, A.M., and Chichilnisky, E.J. (2007). Spatial properties and functional organization of small bistratified ganglion cells in primate retina. J. Neurosci. 27, 13261–13272, https://doi.org/10.1523/jneurosci.3437-07.2007.Search in Google Scholar PubMed PubMed Central

Günther, A., Einwich, A., Sjulstok, E., Feederle, R., Bolte, P., Koch, K.-W., Solov’yov, I.A., and Mouritsen, H. (2018). Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 28, 211–223.e4, https://doi.org/10.1016/j.cub.2017.12.003.Search in Google Scholar PubMed

Hart, N.S. (2001). The visual ecology of avian photoreceptors. Prog. Retin. Eye Res. 20, 675–703, https://doi.org/10.1016/s1350-9462(01)00009-x.Search in Google Scholar PubMed

Haverkamp, S., Albert, L., Balaji, V., Nemec, P., and Dedek, K. (2021). Expression of cell markers and transcription factors in the ganglion cell layer of the avian retina. J. Comp. Neurol. 529, 3171–3193, https://doi.org/10.1002/cne.25154.Search in Google Scholar PubMed

Helmstaedter, M. (2013). Cellular-resolution connectomics: Challenges of dense neural circuit reconstruction. Nat. Methods 10, 501–507, https://doi.org/10.1038/nmeth.2476.Search in Google Scholar PubMed

Heyers, D., Manns, M., Luksch, H., Güntürkün, O., and Mouritsen, H. (2007). A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PloS One 2, e937, https://doi.org/10.1371/journal.pone.0000937.Search in Google Scholar PubMed PubMed Central

Heyers, D., Elbers, D., Bulte, M., Bairlein, F., and Mouritsen, H. (2017). The magnetic map sense and its use in fine-tuning the migration programme of birds. J. Comp. Physiol. 203, 491–497, https://doi.org/10.1007/s00359-017-1164-x.Search in Google Scholar PubMed

Hill, E. and Ritz, T. (2010). Can disordered radical pair systems provide a basis for a magnetic compass in animals? J. R. Soc. Interface 7, S265–S271https://doi.org/10.1098/rsif.2009.0378.focus.Search in Google Scholar PubMed PubMed Central

Hochstoeger, T., Al Said, T., Maestre, D., Walter, F., Vilceanu, A., Pedron, M., Cushion, T.D., Snider, W., Nimpf, S., Nordmann, G.C., et al.. (2020). The biophysical, molecular, and anatomical landscape of pigeon CRY4: A candidate light-based quantal magnetosensor. Sci. Adv. 6, eabb9110, https://doi.org/10.1126/sciadv.abb9110.Search in Google Scholar PubMed PubMed Central

Hore, P.J. and Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344, https://doi.org/10.1146/annurev-biophys-032116-094545.Search in Google Scholar PubMed

Hsu, D.S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R.-P., Todo, T., Wei, Y.-F., and Sancar, A. (1996). Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35, 13871–13877, https://doi.org/10.1021/bi962209o.Search in Google Scholar PubMed

Kerlinger, P. and Moore, F.R. (1989). Atmospheric structure and avian migration. Current Ornithology. D.M. Power, ed. (Boston, MA: Springer US), pp. 109–142.10.1007/978-1-4757-9918-7_3Search in Google Scholar

Kramer, G. (1950). Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37, 377–378, https://doi.org/10.1007/bf00626007.Search in Google Scholar

Kutta, R.J., Archipowa, N., Johannissen, L.O., Jones, A.R., and Scrutton, N.S. (2017). Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906, https://doi.org/10.1038/srep44906.Search in Google Scholar PubMed PubMed Central

Lau, J.C.S., Wagner-Rundell, N., Rodgers, C.T., Green, N.J.B., and Hore, P.J. (2010). Effects of disorder and motion in a radical pair magnetoreceptor. J. R. Soc. Interface 7, S257–264, https://doi.org/10.1098/rsif.2009.0399.focus.Search in Google Scholar PubMed PubMed Central

Liedvogel, M., Feenders, G., Wada, K., Troje, N.F., Jarvis, E.D., and Mouritsen, H. (2007). Lateralized activation of Cluster N in the brains of migratory songbirds: Lateralization in Cluster N in migratory songbirds. Eur. J. Neurosci. 25, 1166–1173, https://doi.org/10.1111/j.1460-9568.2007.05350.x.Search in Google Scholar PubMed PubMed Central

Mouritsen, H., Janssen-Bienhold, U., Liedvogel, M., Feenders, G., Stalleicken, J., Dirks, P., and Weiler, R. (2004). Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl. Acad. Sci. U. S. A. 101, 14294–14299, https://doi.org/10.1073/pnas.0405968101.Search in Google Scholar PubMed PubMed Central

Mouritsen, H. (2018). Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59, https://doi.org/10.1038/s41586-018-0176-1.Search in Google Scholar PubMed

Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., and Jarvis, E.D. (2005). Night-vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U. S. A. 102, 8339–8344, https://doi.org/10.1073/pnas.0409575102.Search in Google Scholar PubMed PubMed Central

Murcia-Belmonte, V. and Erskine, L. (2019). Wiring the binocular visual pathways. Int. J. Mol. Sci. 20, 3282, https://doi.org/10.3390/ijms20133282.Search in Google Scholar PubMed PubMed Central

Nießner, C., Denzau, S., Gross, J.C., Peichl, L., Bischof, H.-J., Fleissner, G., Wiltschko, W., and Wiltschko, R. (2011). Avian ultraviolet/violet cones identified as probable magnetoreceptors. PloS One 6, e20091, https://doi.org/10.1371/journal.pone.0020091.Search in Google Scholar PubMed PubMed Central

Nießner, C., Denzau, S., Stapput, K., Ahmad, M., Peichl, L., Wiltschko, W., and Wiltschko, R. (2013). Magnetoreception: Activated cryptochrome 1a concurs with magnetic orientation in birds. J. R. Soc. Interface 10, 20130638, https://doi.org/10.1098/rsif.2013.0638.Search in Google Scholar PubMed PubMed Central

Nießner, C., Gross, J.C., Denzau, S., Peichl, L., Fleissner, G., Wiltschko, W., and Wiltschko, R. (2016). Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PloS One 11, e0150377, https://doi.org/10.1371/journal.pone.0150377.Search in Google Scholar PubMed PubMed Central

Pakhomov, A., Anashina, A., Heyers, D., Kobylkov, D., Mouritsen, H., and Chernetsov, N. (2018). Magnetic map navigation in a migratory songbird requires trigeminal input. Sci. Rep. 8, 11975, https://doi.org/10.1038/s41598-018-30477-8.Search in Google Scholar PubMed PubMed Central

Remy, M. and Güntürkün, O. (1991). Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon. J. Comp. Neurol. 305, 57–70, https://doi.org/10.1002/cne.903050107.Search in Google Scholar PubMed

Ritz, T., Adem, S., and Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718, https://doi.org/10.1016/s0006-3495(00)76629-x.Search in Google Scholar

Schneider, T., Thalau, H.-P., Semm, P., and Wiltschko, W. (1994). Melatonin is crucial for the migratory orientation of pied flycatchers (Fidecula hypoleuca pallas). J. Exp. Biol. 194, 255–262.10.1242/jeb.194.1.255Search in Google Scholar PubMed

Schulten, K., Swenberg, C.E., and Weller, A. (1978). A biomagnetic sensory mechanism based on magnetic field modulated Coherent electron spin motion. Z. Für Phys. Chem. 111, 1–5, https://doi.org/10.1524/zpch.1978.111.1.001.Search in Google Scholar

Schwarze, S., Steenken, F., Thiele, N., Kobylkov, D., Lefeldt, N., Dreyer, D., Schneider, N.-L., and Mouritsen, H. (2016). Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Sci. Rep. 6, 33805, https://doi.org/10.1038/srep33805.Search in Google Scholar PubMed PubMed Central

Solov’yov, I.A., Mouritsen, H., and Schulten, K. (2010). Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J. 99, 40–49.10.1016/j.bpj.2010.03.053Search in Google Scholar PubMed PubMed Central

Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., Nomura, T., and Ikenaga, M. (1996). Similarity among the Drosophila (6-4)Photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272, 109–112, https://doi.org/10.1126/science.272.5258.109.Search in Google Scholar PubMed

Wallraff, H.G. (1980). Olfaction and homing in pigeons: Nerve-section experiments, critique, hypotheses. J. Comp. Physiol. 139, 209–224, https://doi.org/10.1007/bf00657083.Search in Google Scholar

Wassle, H., Puller, C., Muller, F., and Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29, 106–117, https://doi.org/10.1523/jneurosci.4442-08.2009.Search in Google Scholar

Wiltschko, W. and Wiltschko, R. (1972). Magnetic compass of European robins. Science 176, 62–64, https://doi.org/10.1126/science.176.4030.62.Search in Google Scholar PubMed

Wiltschko, W., Munro, U., Ford, H., and Wiltschko, R. (1993). Red light disrupts magnetic orientation of migratory birds. Nature 364, 525–527, https://doi.org/10.1038/364525a0.Search in Google Scholar

Wiltschko, W. and Wiltschko, R. (1995). Migratory orientation of European Robins is affected by the wavelength of light as well as by a magnetic pulse. J. Comp. Physiol. 177, 363–369.10.1007/BF00192425Search in Google Scholar

Wiltschko, W. and Wiltschko, R. (1996). Magnetic orientation in birds. J. Exp. Biol. 199, 29–38, https://doi.org/10.1242/jeb.199.1.29.Search in Google Scholar PubMed

Wiltschko, W. and Wiltschko, R. (1999). The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula. J. Comp. Physiol. 184, 295–299, https://doi.org/10.1007/s003590050327.Search in Google Scholar

Wong, S.Y., Frederiksen, A., Hanić, M., Schuhmann, F., Grüning, G., Hore, P.J., and Solov’yov, I.A. (2021). Navigation of migratory songbirds: A quantum magnetic compass sensor. Neuroforum 27, 141–150.10.1515/nf-2021-0005Search in Google Scholar

Worster, S., Mouritsen, H., and Hore, P.J. (2017). A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface 14, 20170405, https://doi.org/10.1098/rsif.2017.0405.Search in Google Scholar PubMed PubMed Central

Wu, H., Scholten, A., Einwich, A., Mouritsen, H., and Koch, K.-W. (2020). Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci. Rep. 10, 7364, https://doi.org/10.1038/s41598-020-64429-y.Search in Google Scholar PubMed PubMed Central

Xu, J., Jarocha, L.E., Zollitsch, T., Konowalczyk, M., Henbest, K.B., Richert, S., Golesworthy, M.J., Schmidt, J., Déjean, V., Sowood, D.J.C., et al.. (2021). Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540. https://doi.org/10.1038/s41586-021-03618-9.Search in Google Scholar PubMed

Yamagata, M., Yan, W., and Sanes, J.R. (2021). A cell atlas of the chick retina based on single-cell transcriptomics. Elife 10, e63907, https://doi.org/10.7554/eLife.63907.Search in Google Scholar PubMed PubMed Central

Zapka, M., Heyers, D., Hein, C.M., Engels, S., Schneider, N.-L., Hans, J., Weiler, S., Dreyer, D., Kishkinev, D., Wild, J.M., et al.. (2009). Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461, 1274–1277, https://doi.org/10.1038/nature08528.Search in Google Scholar PubMed

Zapka, M., Heyers, D., Liedvogel, M., Jarvis, E.D., and Mouritsen, H. (2010). Night-time neuronal activation of Cluster N in a day- and night-migrating songbird. Eur. J. Neurosci. 32, 619–624, https://doi.org/10.1111/j.1460-9568.2010.07311.x.Search in Google Scholar PubMed PubMed Central

Zoltowski, B.D., Chelliah, Y., Wickramaratne, A., Jarocha, L., Karki, N., Xu, W., Mouritsen, H., Hore, P.J., Hibbs, R.E., Green, C.B., et al.. (2019). Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc. Natl. Acad. Sci. U. S. A. 116, 19449–19457, https://doi.org/10.1073/pnas.1907875116.Search in Google Scholar PubMed PubMed Central

Online erschienen: 2021-06-30
Erschienen im Druck: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/nf-2021-0007/html
Scroll to top button