Abstract
The spaces d(s) are defined for 0 ≤ s ≤ ∞. We consider the fundamental geometric properties of the d(s) spaces, isomorphic duals of the Cesàro sequence spaces ces(r) with
Acknowledgement
The author grateful to Prof. Mert Çağlar for his suggestions and comments to improve the paper. The author also thanks to the referees for their careful readings of the paper and valuable comments to improve it.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] G. Bennett, “Factorizing the classical inequalities,” Mem. Am. Math. Soc., vol. 120, no. 576, 1996, https://doi.org/10.1090/memo/0576.Search in Google Scholar
[2] J. Bonet and W. J. Ricker, “Operators acting in the dual spaces of discrete Cesàro spaces,” Monatshefte Math., vol. 191, no. 3, pp. 487–512, 2020. https://doi.org/10.1007/s00605-020-01370-2.Search in Google Scholar
[3] J. Bonet and W. J. Ricker, “Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces,” Funct. Approx. Comment. Math., vol. 64, no. 1, pp. 109–139, 2021.10.7169/facm/1907Search in Google Scholar
[4] J. Bonet and W. J. Ricker, “Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces,” Bull. Belg. Math. Soc. Simon Stevin, vol. 28, no. 1, pp. 1–19, 2021.10.36045/j.bbms.200203Search in Google Scholar
[5] J. Bonet and W. J. Ricker, “Order spectrum of the Cesàro operator in Banach lattice sequence spaces,” Positivity, vol. 24, no. 3, pp. 593–603, 2020. https://doi.org/10.1007/s11117-019-00699-9.Search in Google Scholar
[6] G. P. Curbera and W. J. Ricker, “Solid extensions of the Cesàro operator on ℓp and c0,” Integral Equ. Oper. Theory, vol. 80, no. 1, pp. 61–77, 2014. https://doi.org/10.1007/s00020-014-2149-6.Search in Google Scholar
[7] G. P. Curbera and W. J. Ricker, “Fine spectra and compactness of generalized Cesàro operators in Banach lattices in CN${\mathbb{C}}^{\mathbb{N}}$,” J. Math. Anal. Appl., vol. 507, no. 3, pp. 1–31, 2022.10.1016/j.jmaa.2021.125824Search in Google Scholar
[8] U. Gönüllü, F. Polat, and M. R. Weber, “Cesàro vector lattices and their Ideals of finite elements,” Positivity, vol. 27, no. 2, pp. 1–15, 2023. https://doi.org/10.1007/s11117-023-00977-7.Search in Google Scholar
[9] U. Gönüllü, F. Polat, and M. R. Weber, “Duals of Cesàro sequence vector lattices, Cesàro sums of Banach lattices and their ideals of finite elements,” Arch. Math., vol. 120, no. 6, pp. 619–630, 2023. https://doi.org/10.1007/s00013-023-01840-7.Search in Google Scholar
[10] U. Gönüllü, F. Polat, and M. R. Weber, “On the generalized Cesàro sequence spaces and some of their properties,” Submitted.Search in Google Scholar
[11] J. R. Johnson, P. D., F. Polat, “On spaces derivable from a solid sequence space and a non-negative lower triangular matrix,” Oper. Matrices, vol. 9, pp. 803–814, 2015, https://doi.org/10.7153/oam-09-46.Search in Google Scholar
[12] W. J. Ricker, “The order spectrum of convolution operators in discrete Cesàro spaces,” Indag. Math, vol. 30, no. 4, pp. 527–535, 2019. https://doi.org/10.1016/j.indag.2019.01.008.Search in Google Scholar
[13] Programma van de Jaarlijkse Prijsvragen, Nieuw Arch. voor Wiskunde, vol. 19, pp. 70–76, 1971.Search in Google Scholar
[14] A. A. Jagers, “A note on Cesàro sequence spaces,” Nieuw Arch. Wisk., vol. 3, pp. 113–124, 1974.Search in Google Scholar
[15] A. Alexiewicz, “On Cauchy’s condensation theorem,” Studia Math., vol. 16, no. 1, pp. 80–85, 1957. https://doi.org/10.4064/sm-16-1-80-85.Search in Google Scholar
[16] R. E. Megginson, An Introduction to Banach Space Theory, New York, Berlin, Heidelberg, Springer-Verlag, 1998.10.1007/978-1-4612-0603-3Search in Google Scholar
[17] Y. Cui, L. Jie, and R. Płuciennik, “Local uniform nonsquareness in Cesàro sequence spaces,” Comment. Math., vol. 37, no. 1, pp. 47–58, 1997.Search in Google Scholar
[18] Y. Cui and H. Hudik, “Some geometric properties related to fixed point theory in Cesàro spaces,” Collect. Math, vol. 50, no. 3, pp. 277–288, 1999.Search in Google Scholar
[19] Y. Cui, H. Hudik, and Y. Li, “On the García-Falset coefficient in some Banach sequence spaces,” in Function Spaces, Poznań, 1998, In: Lect. Notes Pure Appl. Math., vol. 213, New York, Dekker, 2000, pp. 141–148.Search in Google Scholar
[20] Y. Cui, C. Meng, and R. Płuciennik, “Banach–Saks property and property (β) in Cesàro sequence spaces,” Southeast Asian Bull. Math., vol. 24, no. 2, pp. 201–210, 2000. https://doi.org/10.1007/s100120070003.Search in Google Scholar
[21] H. Hudzik and K. Wlaźlak, “Rotundity properties in Banach spaces via sublinear operators,” Nonlinear Anal., vol. 64, no. 6, pp. 1171–1188, 2006. https://doi.org/10.1016/j.na.2005.05.060.Search in Google Scholar
[22] Y. Q. Liu, B. E. Wu, and Y. P. Lee, Method of Sequence Spaces, Guangzhou, Guangdong University of Science and Technology Press, 1966, (in Chinese).Search in Google Scholar
[23] L. Maligranda, N. Petrot, and S. Suantai, “On the James constant and B-convexity of Cesàro and Cesàro–Orlicz sequence spaces,” J. Math. Anal. Appl., vol. 326, no. 1, pp. 312–331, 2007. https://doi.org/10.1016/j.jmaa.2006.02.085.Search in Google Scholar
[24] N. Petrot and S. Suantai, “Uniform opial properties in generalized Cesàro sequence spaces,” Nonlinear Anal., vol. 63, no. 8, pp. 1116–1125, 2005. https://doi.org/10.1016/j.na.2005.05.032.Search in Google Scholar
[25] S. Saejung, “Another look at Cesàro sequence spaces,” J. Math. Anal. Appl., vol. 366, no. 2, pp. 530–537, 2010. https://doi.org/10.1016/j.jmaa.2010.01.029.Search in Google Scholar
[26] W. Sanhan and S. Suantai, “Some geometric properties of Cesàro sequence space,” Kyungpook Math. J., vol. 43, no. 2, pp. 191–197, 2003.Search in Google Scholar
[27] W. Sanhan and S. Suantai, “On k-nearly uniform convex property in generalized Cesàro sequence spaces,” Int. J. Math. Sci., no. 57, pp. 3599–3607, 2003.10.1155/S0161171203301267Search in Google Scholar
[28] S. Suantai, “On the H-property of some Banach sequence spaces,” Arch. Math. (Brno), vol. 39, no. 4, pp. 309–316, 2003.Search in Google Scholar
[29] S. Suantai, “On some convexity properties of generalized Cesàro sequence spaces,” Georgian Math. J., vol. 10, no. 1, pp. 193–200, 2003. https://doi.org/10.1515/gmj.2003.193.Search in Google Scholar
[30] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd ed., Berlin, Springer, 2006.Search in Google Scholar
[31] J. Schur, “Über lineare Transformationen in der Theorie der unendlichen Reihen,” J. Reine Angew., vol. 151, no. 1, pp. 79–111, 1921.10.1515/crll.1921.151.79Search in Google Scholar
[32] C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, vol. 105, 2nd ed. Providence, Amer. Math. Soc., 2003.10.1090/surv/105Search in Google Scholar
[33] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Dordrecht, Springer, 2006, Reprint of the 1985 original.10.1007/978-1-4020-5008-4Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston