Home Mathematics The Maxwell-Boltzmann-Exponential distribution with regression model
Article
Licensed
Unlicensed Requires Authentication

The Maxwell-Boltzmann-Exponential distribution with regression model

  • Emrah Altun EMAIL logo and Gökçen Altun
Published/Copyright: August 14, 2024
Become an author with De Gruyter Brill

Abstract

This paper proposes a new probability model called as Maxwell-Boltzmann-Exponential (MBE) distribution. The MBE distribution arises as a mixture distribution of the Maxwell-Boltzmann and exponential distributions. The statistical properties of the distributions are studied and obtained in closed-form expressions. Three methodologies are assessed and compared for the estimation of parameters in the MBE distribution. The MBE regression model is defined, with the proposed regression model being an alternative to the gamma regression model for response variables that are extremely right-skewed and bimodal. Two real data sets are used to demonstrate the applicability of the proposed models against the existing models.

MSC 2010: Primary 62E15
  1. Communicated by Gejza Wimmer

References

[1] Ali, S.—Dey, S.—Tahir, M. H.—Mansoor, M.: Two-parameter logistic-exponential distribution: Some new properties and estimation methods, American Journal of Mathematical and Management Sciences 39 (1999), 270–298.10.1080/01966324.2020.1728453Search in Google Scholar

[2] Ali, S.—Dey, S.—Tahir, M. H.—Mansoor, M.: A comparison of different methods of estimation for the flexible Weibull distribution, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69 (2020), 794–814.10.31801/cfsuasmas.597680Search in Google Scholar

[3] Aarset, M. V.: How to identify a bathtub hazard rate, IEEE Transactions on Reliability 36 (1987), 106–108.10.1109/TR.1987.5222310Search in Google Scholar

[4] Altun, E.—Korkmaz, M. Ç.—El-Morshedy, M.—Eliwa, M. S.: The extended gamma distribution with regression model and applications, AIMS Mathematics 6 (2021), 2418–2439.10.3934/math.2021147Search in Google Scholar

[5] Bekker, A.—Roux, J. J. J.: Reliability characteristics of the Maxwell distribution: A Bayes estimation study, Comm. Statist. Theory Methods 34 (2005), 2169–2178.10.1080/STA-200066424Search in Google Scholar

[6] Birnbaum, Z. W.—Saunders, S. C.: A new family of life distributions, J. Appl. Probab. 6 (1969), 319–327.10.1017/S0021900200032848Search in Google Scholar

[7] Cepeda, E.—Gamerman, D.: Bayesian methodology for modeling parameters in the two parameter exponential family, Revista Estadística 57 (2005), 93–105.Search in Google Scholar

[8] Castillo, J. S.—Gaete, K. P.—Muñoz, H. A.—Gallardo, D. I.—Bourguignon, M.—Venegas, O.—Gómez, H. W.: Scale Mixture of Maxwell-Boltzmann Distribution, Mathematics 11 (2023), 1–16.10.3390/math11030529Search in Google Scholar

[9] Dey, S.—Ali, S.—Kumar, D.: Weighted inverted Weibull distribution: Properties and estimation, Journal of Statistics and Management Systems 23 (2020), 843–885.10.1080/09720510.2019.1669344Search in Google Scholar

[10] Dey, S.—Dey, T.—Ali, S.: Two-parameter Maxwell distribution: Properties and different methods of estimation, J. Stat. Theory Pract. 10 (2016), 291–310.10.1080/15598608.2015.1135090Search in Google Scholar

[11] Dunn, S. P.—Smyth, G. K.: Randomized quantile residuals, J. Comput. Graph. Statist. 5 (1996), 236–244.10.1080/10618600.1996.10474708Search in Google Scholar

[12] Gallardo, D. I.—Gomez, Y. M.—Segovia, F. A.: Exponentiated power Maxwell distribution with quantile regression and applications, SORT 45 (2021), 181–200.Search in Google Scholar

[13] Iriarte, Y. A.—Astorga, J.—Bolfarine, H.—Gómez Geraldo, H.: Gamma-Maxwell distribution, Comm. Statist. Theory Methods 46 (2017), 4264–4274.10.1080/03610926.2015.1081946Search in Google Scholar

[14] Ghitany, M. E.—Atieh, B.—Nadarajah, S.: Lindley distribution and its application, Math. Comput. Simulation 78 (2008), 493–506.10.1016/j.matcom.2007.06.007Search in Google Scholar

[15] Krishna, H.—Vivekanand—Kumar, K.: Estimation in Maxwell distribution with randomly censored data, J. Stat. Comput. Simul. 85 (2015), 3560–3578.10.1080/00949655.2014.986483Search in Google Scholar

[16] Lorenz, M. O.: Methods of measuring the concentration of wealth, Publications of the American Statistical Association 9 (1905), 209–219.10.1080/15225437.1905.10503443Search in Google Scholar

[17] Mansoor, M.—Tahir, M. H.—Cordeiro, G. M.—Ali, S.—Alzaatreh, A.: The Lindley negative-binomial distribution: properties, estimation and applications to lifetime data, Math. Slovaca 70 (2020), 917–934.10.1515/ms-2017-0404Search in Google Scholar

[18] Marshall, A. W.—Olkin, I.: Life Distributions, Springer, New York, 2007.Search in Google Scholar

[19] Maxwell, J. C.: On the dynamical theory of gases, Philos. Trans. Roy. Soc. London 157 (1867), 49–88.10.1098/rstl.1867.0004Search in Google Scholar

[20] Sen, S.—Maiti, S. S.—Chandra, N.: The xgamma distribution: statistical properties and application, Journal of Modern Applied Statistical Methods 15 (2016), 774–788.10.22237/jmasm/1462077420Search in Google Scholar

[21] Shanker, R.—Sharma, S.—Shanker, R.: A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math. 4 (2013), 363–368.10.4236/am.2013.42056Search in Google Scholar

[22] Sharma, V. K.—Bakouch, H. S.—Sutkar, K.: An extended Maxwell distribution: Properties and applications, Comm. Statist. Simulation Comput. 46 (2017), 6982–7007.10.1080/03610918.2016.1222422Search in Google Scholar

[23] Tyagi, R. K.—Bhattacharya, S. K.: Bayes estimation of the Maxwell’s velocity distribution function, Statistica 29 (1989), 563–567.Search in Google Scholar

[24] Zakerzadeh, H.—Dolati, A.: Generalized lindley distribution, Journal of Mathematical Extension. 3 (2009), 13–25.Search in Google Scholar

[25] Zeghdoudi, H.—Nedjar, S.: Gamma Lindley distribution and its application, J. Appl. Probab. Stat. 11 (2016), 129–138.10.16929/as/2016.923.83Search in Google Scholar

[26] Nedjar, S.—Zeghdoudi, H.: On gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math. 298 (2016), 167–174.10.1016/j.cam.2015.11.047Search in Google Scholar

Received: 2023-11-17
Accepted: 2024-06-25
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0074/pdf
Scroll to top button