Startseite An algebraic study of the logic S5’(BL)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An algebraic study of the logic S5’(BL)

  • Juntao Wang EMAIL logo , Xiaoli He und Mei Wang
Veröffentlicht/Copyright: 4. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

P. Hájek introduced an S5-like modal fuzzy logic S5(BL) and showed that is equivalent to the monadic basic predicate logic mBL. Inspired by the above important results, D. Castaño et al. introduced monadic BL-algebras and their corresponding propositional logic S5’(BL), which is a simplified set of axioms of S5(BL). In this paper, we review the algebraic semantics of S5’(BL) and obtain some new results regarding to monadic BL-algebras. First we recall that S5’(BL) is completeness with respect to the variety 𝕄𝔹𝕃 of monadic BL-algebras and obtain a necessary and sufficient condition for the logic S5’(BL) to be semilinear. Then we study some further algebraic properties of monadic BL-algebras and discuss the relationship between monadic MV-algebras and monadic BL-algebras. Finally we give some characterizations of representable, simple, semisimple and directly indecomposable monadic BL-algebras, which are important members of the variety 𝕄𝔹𝕃. These results also constitute a crucial first step for providing an equivalent algebraic foundation for mBL.


This study was funded by a grant of National Natural Science Foundation of China (12001423,12001422,61976244, 11961016), the Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-762, 2021JQ-579) and the Natural Science Foundation of Education Committee of Shannxi Province (20JK0626).


  1. (Communicated by Roberto Giuntini)

References

[1] Agliano, P.—Montagna, F.: Varieties of BL-algebras I: General properties, J. Pure Appl. Algebra 181 (2003), 105–129.10.1016/S0022-4049(02)00329-8Suche in Google Scholar

[2] Blok, W. J.—Pigozzi, D.: Algebraizable logics, Mem. Amer. Math. Soc. 396, vol 77, 1989.10.1090/memo/0396Suche in Google Scholar

[3] Borumd Saeid, A.—Somayeh, M.: Some results in BL-algebras, Math. Log. Q. 55 (2009), 649–658.10.1002/malq.200910025Suche in Google Scholar

[4] Buşneag, D.—Piciu, D.: On the lattice of deductive systems of a BL-algebra, Cent. Eur. J. Math. 2 (2003), 221–237.10.2478/BF02476010Suche in Google Scholar

[5] Burris, S.—Sankappanavar, M. P.: A Course in Universal Algebra, Springer-Verlag, New York, 1981.10.1007/978-1-4613-8130-3Suche in Google Scholar

[6] Castaño, D.—Cimadamore, C.— Verela, J. P. D.–Rueda, L.: Monadic BL-algebras: The equivalent algebraic semantics of Hájek’s monadic fuzzy logic, Fuzzy Sets and Systems 320 (2017), 40–59.10.1016/j.fss.2016.12.007Suche in Google Scholar

[7] Cintula, P.—Noguera, C.: Implicational (semilinear) logics III: completeness properties, Arch. Math. Logic 55 (2016), 353–372.10.1007/s00153-017-0577-0Suche in Google Scholar

[8] Di Nola, A.—Grigolia, R.: On monadic MV-algebras, Ann. Pure Appl. Logic 128 (2004), 125–139.10.1016/j.apal.2003.11.031Suche in Google Scholar

[9] Di Nola, A.—Grigolia, R.—Lenzi, G.: Topological spaces of monadic MV-algebras, Soft Comput. 23 (2019), 375–381.10.1007/s00500-018-3166-1Suche in Google Scholar

[10] Ghorbani, S: Monadic pseudo equality algebras, Soft Comput. 23 (2019), 12937–12950.10.1007/s00500-019-04243-5Suche in Google Scholar

[11] Grigolia, R.: Monadic BL-algebras, Georgian Math. J. 13 (2006), 267–276.10.1515/GMJ.2006.267Suche in Google Scholar

[12] Hájek, P.: Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.10.1007/978-94-011-5300-3Suche in Google Scholar

[13] Hájek, P.: Fuzzy logics with Noncommutative conjuctions, J. Logic Comput. 13 (2003), 469–479.10.1093/logcom/13.4.469Suche in Google Scholar

[14] Hájek, P.—Haniková, Z.: Interpreting lattice-valued set theory in fuzzy set theory, Log. J. IGPL 21 (2013), 77–90.10.1093/jigpal/jzs023Suche in Google Scholar

[15] Halmos, R. P.: Algebraic logic, I. Monadic boolean algebras, Composition Mathematica 12 (1955), 217–249.Suche in Google Scholar

[16] Liu, H. L.: On categorical equivalences of equality algebras and monadic equality algebras, Log. J. IGPL 27 (2019), 267–280.10.1093/jigpal/jzy038Suche in Google Scholar

[17] Noguera, C: Algebraic Study of Axiomatic Extensions of Triangular Norm Based Fuzzy Logics, Ph.D. thesis, IIIA-CSIC, 2006.Suche in Google Scholar

[18] Orellano Figallo, A.: A topological duality for moandic MV-algebras, Soft Comput. 21 (2017), 7119–7123.10.1007/s00500-016-2255-2Suche in Google Scholar

[19] Orellano Figallo, A.—Pascual, I.—Ziliani, A.: Monadic distributive lattices, Log. J. IGPL 15 (2007), 535–551.10.1093/jigpal/jzm039Suche in Google Scholar

[20] Orellano Figallo, A.—Pascual, I.: Topological dualities for strong monadic distributive lattices and applications, Journal of Multiple-Valued Logic and Soft Computing 32 (2019), 499–540.Suche in Google Scholar

[21] Rachůnek, J.—Şalounová, D.: Monadic GMV-algebras, Arch. Math. Logic 47 (2008), 277–297.10.1007/s00153-008-0086-2Suche in Google Scholar

[22] Rachůnek, J.—Şvrček, F.: Monadic bounded commutative residuated -monoids, Order 25 (2008), 157–175.10.1007/s11083-008-9088-2Suche in Google Scholar

[23] Rasiowa, H: An Algebraic Approach to Non-Classical Logic, North Holland, Amsterdam, 1974.Suche in Google Scholar

[24] Rutledge, J. D.: A Preliminary Investigation of the Infinitely Many-Valued Predicate Calculus, Ph. D, Thesis, Cornell University, 1959.Suche in Google Scholar

[25] Turunen, E: BL-algebras of basic fuzzy logic, Mathware Soft Computing 6 (1998), 49–61.Suche in Google Scholar

[26] Wang, J. T.—He, P. F.—She, Y. H.: Monadic NM-algebras, Log. J. IGPL 27 (2019), 812–835.10.1093/jigpal/jzz005Suche in Google Scholar

[27] Wang, J. T.—Xin, X. L.—He, P. F.: Monadic bounded hoops, Soft Comput. 22 (2018), 1749–1762.10.1007/s00500-017-2648-xSuche in Google Scholar

[28] Wang, J. T.—Wang, M.: The lattices of monadic filters in monadic BL-algebras, IAENG Int. J. Appl. Math. Comput. Sci. 50 (2020), 656–660.Suche in Google Scholar

[29] Xin, X. L.—Fu, Y. L.—Lai, Y. Y.—Wang, J. T.: Monadic pseudo BCI-algebras and corresponding logics, Soft Comput. 23 (2019), 1499–1510.10.1007/s00500-018-3189-7Suche in Google Scholar

Received: 2021-05-23
Accepted: 2021-12-02
Published Online: 2022-12-04
Published in Print: 2022-12-16

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0098/pdf
Button zum nach oben scrollen