Home Mathematics Six-cycle systems
Article
Licensed
Unlicensed Requires Authentication

Six-cycle systems

  • Mariusz Meszka and Alexander Rosa EMAIL logo
Published/Copyright: June 8, 2021
Become an author with De Gruyter Brill

Abstract

In this article, we attempt to survey all that has been written about 6-cycle systems. In addition, several new results, including many enumeration results, are included here for the first time. Our survey concludes with a list of open problems.

MSC 2010: Primary 05C51
  1. (Communicated by Peter Horák)

References

[1] Adams, P.—Billington, E. J.—Bryant, D. E.: Partitionable perfect cycle systems with cycle length 6 and 8, Discrete Math. 149 (1999), 1–9.10.1016/0012-365X(94)00305-3Search in Google Scholar

[2] Adams, P.—Billington, E. J.—Bryant, D. E.—Khodkar, A.: The μ-way intersection problem for m-cycle systems, Discrete Math. 231 (2001), 27–56.10.1016/S0012-365X(00)00303-4Search in Google Scholar

[3] Adams, P.—Billington, E. J.—Mahmoodian, E.: The simultaneous metamorphosis of small-wheel systems, J. Combin. Math. Combin. Comput. 44 (2003), 209–223.Search in Google Scholar

[4] Alspach, B.—Gavlas, H.—Šajna, M.—Verall, H.: Cycle decompositions IV: complete directed graphs and fixed length directed cycles, J. Combin. Theory (A) 103 (2003), 165–208.10.1016/S0097-3165(03)00098-0Search in Google Scholar

[5] Archdeacon, D.—Debowsky, M.—Dinitz, J.—Gavlas, H.: Cycle systems in the complete bipartite graph minus a one-factor, Discrete Math. 284 (2004), 37–43.10.1016/j.disc.2003.11.021Search in Google Scholar

[6] Ashe, D. J.—Fu, H. L.—Rodger, C. A.: A solution to the forest leave problem for partial 6-cycle systems, Discrete Math. 281 (2004), 27–41.10.1016/j.disc.2003.08.004Search in Google Scholar

[7] Ashe, D. J.—Rodger, C. A.—Fu, H. L.: All 2-regular leaves of partial 6-cycle systems, Ars Combin. 76 (2005), 129–150.Search in Google Scholar

[8] Baker, C.—Billington, E. J.: Decomposition of complete tripartite graphs into gregarious 3-paths and 6-cycles, J. Combin. Math. Combin. Comput. 93 (2015), 97–130.Search in Google Scholar

[9] Bermond, J.-C.—Faber, V.: Decomposition of the complete directed graph into k-circuits, J. Combin. Theory (B) 21 (1976), 146–155.10.1016/0095-8956(76)90055-1Search in Google Scholar

[10] Bermond, J.-C.—Huang, C.—Sotteau, D.: Balanced cycle and circuit designs: even cases, Ars Combin. 5 (1978), 293–318.Search in Google Scholar

[11] Billington, E. J.: The intersection problem for m-cycle systems, J. Combin. Designs 1 (1993), 435–452.10.1002/jcd.3180010605Search in Google Scholar

[12] Billington, E. J.—Cavenagh, N. J.—Khodkar, A.: Complete sets of metamorphoses: Twofold 4-cycle systems into twofold 6-cycle systems, Discrete Math. 312 (2012), 2438–2445.10.1016/j.disc.2012.04.029Search in Google Scholar

[13] Billington, E. J.—Hoffman, D. G.: Lambda-fold 2-perfect 6-cycle systems in equipartite graphs, Discrete Math. 311 (2011), 2423–2427.10.1016/j.disc.2011.06.026Search in Google Scholar

[14] Billington, E. J.—Khodkar, A.—Petrusma, D.—Sutton, M.: Lambda-fold theta graphs: Metamorphosis into 6-cycles, AKCE Int. J. Graphs Combin. 11 (2004), 81–94.Search in Google Scholar

[15] Billington, E. J.—Kucukcifci, S.—Lindner, C. C.—Meszka, M.: Squashing minimum coverings of 6-cycles into minimum coverings of triples, Aequationes Math. 89 (2015), 1223–1239.10.1007/s00010-014-0312-4Search in Google Scholar

[16] Billington, E. J.—Lindner, C. C.: The spectrum for lambda-fold 2-perfect 6-cycle systems, Europ. J. Combin. 13 (1992), 5–14.10.1016/0195-6698(92)90063-6Search in Google Scholar

[17] Billington, E. J.—Lindner, C. C.: The spectrum for 3-perfect λ-fold 6-cycle systems, Utilitas Math. 48 (1995), 243–253.10.1016/0195-6698(92)90063-6Search in Google Scholar

[18] Billington, E. J.—Lindner, C. C.—Meszka, M.—Rosa, A.: Extra 2-perfect twofold 6-cycle systems. In: Recent Results in Designs and Graphs: a Tribute to Lucia Gionfriddo, Quad. Mat. 28, Aracne, Roma, 2012, pp. 135–149.Search in Google Scholar

[19] Billington, E. J.—Quattrocchi, G.: The metamorphosis of lambda-fold K3,3-designs into lambda-fold 6-cycle systems, Ars Combin. 64 (2002), 65–80.Search in Google Scholar

[20] Billington, E. J.—Smith, B. R.—Hoffman, D. G.: Equipartite gregarious 6- and 8-cycle systems, Discrete Math. 307 (2007), 1659–1667.10.1016/j.disc.2006.09.016Search in Google Scholar

[21] Bonacini, P.—Gionfriddo, M.—Marino, L.: Block colourings of 6-cycle systems, Opuscula Math. 37 (2017), 647–664.10.7494/OpMath.2017.37.5.647Search in Google Scholar

[22] Brown, L.—Coker, G.—Gardner, R.—Kennedy, J.: Packing the complete bipartite graph with hexagons, Congr. Numer. 174 (2005), 97–106.Search in Google Scholar

[23] Bryant, D.: Cycle decompositions of complete graphs. In: Surveys in Combinatorics 2007, LMS Lecture Note Ser. 346, Cambridge Univ. Press, 2007, pp. 67–97.10.1017/CBO9780511666209.004Search in Google Scholar

[24] Bryant, D.—Grannell, M.—Griggs, T.: Large sets of cycle systems on nine points, J. Combin. Math. Combin. Comput. 53 (2005), 95–102.Search in Google Scholar

[25] Bryant, D.—Horsley, D.—Maenhaut, B.: Decompositions into 2-regular subgraphs and equitable partial cycle decompositions, J. Combin. Theory (B) 93 (2005), 67–72.10.1016/j.jctb.2004.06.002Search in Google Scholar

[26] Bryant, D.—Rodger, C.: Cycle decompositions. In: Handbook of Combinatorial Designs, 2nd Edition, (C. J. Colbourn and J. H. Dinitz, eds.), VI.12, CRC Press, 2006, pp. 373–382.Search in Google Scholar

[27] Bryant, D. E.—Rodger, C. A.—Spicer, E. R.: Embeddings of m-cycle systems and incomplete m-cycle systems: m ≤ 14, Discrete Math. 171 (1997), 55–75.10.1016/S0012-365X(96)00072-6Search in Google Scholar

[28] Buratti, M.: Existence of 1-rotational k-cycle systems of the complete graph, Graphs Combin. 20 (2004), 41–46.10.1007/s00373-003-0547-7Search in Google Scholar

[29] Buratti, M.—Del Fra, A.: Existence of cyclic k-cycle systems of the complete graph, Discrete Math. 261 (2003), 113–125.10.1016/S0012-365X(02)00463-6Search in Google Scholar

[30] Burgess, A.—Pike, D.: Colouring even cycle systems, Discrete Math. 308 (2008), 962–973.10.1016/j.disc.2007.07.115Search in Google Scholar

[31] Cao, H.—Niu, M.—Tang, C.: On the existence of cycle frames and almost resolvable cycle systems, Discrete Math. 311 (2011), 2220–2232.10.1016/j.disc.2011.07.008Search in Google Scholar

[32] Cavenagh, N. J.—Billington, E. J.: Decomposition of complete multipartite graphs into cycles of even length, Graphs Combin. 16 (2000), 49–65.10.1007/s003730050003Search in Google Scholar

[33] Černý, A.—Horák, P.—Rosa, A.—Znám, Š.: Maximal pentagonal packings, Acta Math. Univ. Comenian. 65 (1996), 215–227.Search in Google Scholar

[34] Cho, J. R.: A note on decomposition of complete equipartite graphs into gregarious 6-cycles, Bull. Korean Math. Soc. 44 (2007), 709–719.10.4134/BKMS.2007.44.4.709Search in Google Scholar

[35] Cho, J. R.—Gould, R. J.: Decompositions of complete multipartite graphs into gregarious 6-cycles using complete differences, J. Korean Math. Soc. 45 (2008), 1623–1634.10.4134/JKMS.2008.45.6.1623Search in Google Scholar

[36] Colbourn, C. J.—Rosa, A.: Triple Systems, Oxford Univ. Press, 1999.10.1093/oso/9780198535768.001.0001Search in Google Scholar

[37] Cox, B. A.: The complete spectrum of 6-cycle systems of L(Kn), J. Combin. Designs 3 (1995), 353–362.10.1002/jcd.3180030506Search in Google Scholar

[38] Dejter, I. J.—Rivera-Vega, P. I.—Rosa, A.: Invariants for 2-factorizations and cycle systems, J. Combin. Math. Combin. Comput. 16 (1994), 129–152.Search in Google Scholar

[39] Doyen, J.—Wilson, R. M.: Embeddings of Steiner triple systems, Discrete Math. 5 (1973), 229–239.10.1016/0012-365X(73)90139-8Search in Google Scholar

[40] Farrell, K. A.—Pike, D. A.: 6-cycle decompositions of the Cartesian product of two complete graphs, Utilitas Math. 63 (2003), 115–127.Search in Google Scholar

[41] Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos. Math. 6 (1939), 239–250.Search in Google Scholar

[42] Fu, H. L.—Huang, M. H.: Packing balanced complete multipartite graphs with hexagons, Ars Combin. 71 (2004), 49–64.Search in Google Scholar

[43] Gionfriddo, L.: Hexagon biquadrangle systems, Australas. J. Combin. 36 (2006), 167–176.Search in Google Scholar

[44] Gower, R.—Oates-Williams, S.—Donovan, D.—Billington, E. J.: The quasigroup variety arising from a 2-perfect 6-cycle system of order 13, J. Combin. Math. Combin. Comput. 10 (1991), 119–128.Search in Google Scholar

[45] Gower, R. A. H., Non-isomorphic 2-perfect 6-cycle systems of order 13 Bull. Austral. Math. Soc. 44 (1991), 381–385.10.1017/S0004972700029877Search in Google Scholar

[46] Grannell, M. J.—Griggs, T. S.—Lovegrove, G. J.: Even-cycle systems with prescribed automorphism groups, J. Combin. Designs 21 (2013), 142–156.10.1002/jcd.21334Search in Google Scholar

[47] Grinstead, C. M.: On coverings and packings of the complete graph with cycles, Ars Combin. 3 (1977), 25–37.Search in Google Scholar

[48] Hoffman, D. G.—Schellenberg, P. J.: The existence of Ck-factorizations of KnF, Discrete Math. 97 (1991), 243–250.10.1016/0012-365X(91)90440-DSearch in Google Scholar

[49] Horsley, D.: Maximum packings of the complete graph with uniform length cycles, J. Graph Theory 68 (2011), 1–7.10.1002/jgt.20536Search in Google Scholar

[50] Horsley, D.—Pike, D.: On cycle systems with specified weak chromatic number, J. Combin. Theory (A) 117, (2010), 1195–1206.10.1016/j.jcta.2009.11.008Search in Google Scholar

[51] Jenkins, P.: Irreducible 2-fold cycle systems, J. Combin. Designs 14 (2006), 324–332.10.1002/jcd.20068Search in Google Scholar

[52] Jordon, H.—Morris, J.: Cyclic m-cycle systems of complete graphs minus a 1-factor, Australas. J. Combin. 67 (2017), 304–326.10.1016/j.disc.2007.05.009Search in Google Scholar

[53] Kennedy, J. A.: Maximum packings of Kn with hexagons, Australas. J. Combin. 7 (1993), 101–110.Search in Google Scholar

[54] Kennedy, J. A.: Maximum packings of Kn with hexagons: Corrigendum, Australas. J. Combin. 10 (1994), 293.Search in Google Scholar

[55] Kennedy, J. A., Minimum coverings of Kn with hexagons, Australas. J. Combin. 16 (1997), 295–303.Search in Google Scholar

[56] Kobayashi, M.—Nakamura, G.: Uniform coverings of 2-paths with 6-cycles in the complete graph, Australas. J. Combin. 34 (2006), 299–304.Search in Google Scholar

[57] Lindner, C. C.: A small embedding for partial hexagon systems, Australas. J. Combin. 16 (1997), 77–81.Search in Google Scholar

[58] Lindner, C. C.: A survey of small embeddings for partial cycle systems. In: Geometry, Combinatorial Designs and Related Structures, London Math. Soc. Lecture Notes Ser. 245, Cambridge Univ. Press, 1997, pp. 123–147.10.1017/CBO9780511526114.012Search in Google Scholar

[59] Lindner, C. C.: Il primo amore non si scorda mai or an up-to-date survey of small embeddings for partial even-cycle systems, J. Geometry 76 (2003), 183–199.10.1007/s00022-003-1696-9Search in Google Scholar

[60] Lindner, C. C.—Lo Faro, G.—Tripodi, A.: Squashing maximum packings of 6-cycles into maximum packings of triples, Acta Math. Contemp. 10 (2016), 19–29.10.26493/1855-3974.706.33dSearch in Google Scholar

[61] Lindner, C. C.—Meszka, M.: Almost 2-perfect minimum coverings of Kn with 6-cycles, Bull. Inst. Combin. Appl. 75 (2015), 64–78.Search in Google Scholar

[62] Lindner, C. C.—Meszka, M.—Rosa, A.: Almost resolvable cycle systems – an analogue of Hanani triple systems, J. Combin. Designs 17 (2009), 404–410.10.1002/jcd.20204Search in Google Scholar

[63] Lindner, C. C.—Meszka, M.—Rosa, A.: From squashed 6-cycles to Steiner triple systems, J. Combin. Designs 22 (2014), 189–195.10.1002/jcd.21346Search in Google Scholar

[64] Lindner, C. C.—Meszka, M.—Rosa, A.: Almost 2-perfect 6-cycle systems, Designs Codes Cryptogr. 77 (2015), 321–333.10.1007/s10623-015-0049-7Search in Google Scholar

[65] Lindner, C. C.—Meszka, M.—Rosa, A.: Converting a 6-cycle system into a Steiner triple system, Australas. J. Combin. 71 (2018), 394–402.Search in Google Scholar

[66] Lindner, C. C.—Milazzo, L.: Embedding partial bipartite directed cycle systems, Discrete Math. 244 (2002), 269–278.10.1016/S0012-365X(01)00089-9Search in Google Scholar

[67] Lindner, C. C.—Phelps, K. T.—Rodger, C. A.: The spectrum for 2-perfect 6-cycle systems, J. Combin. Theory (A) 57 (1991), 76–85.10.1016/0097-3165(91)90007-4Search in Google Scholar

[68] Lindner, C. C.—Rodger, C. A.: Decomposition into cycles II: Cycle systems. In: Contemporary Design Theory. A Collection of Surveys, (J. H. Dinitz and D. R. Stinson, eds.), Wiley, 1992, pp. 325–369.Search in Google Scholar

[69] Lindner, C. C.—Rodger, C. A.: Small embeddings of partial directed cycle systems, Bull. Austral. Math. Soc. 46 (1992), 213–224.10.1017/S0004972700011850Search in Google Scholar

[70] Lindner, C. C.—Rodger, C. A.—Stinson, D. R.: Embedding cycle systems of even length, J. Combin. Math. Combin. Comput. 3 (1988), 65–69.Search in Google Scholar

[71] Lindner, C. C.—Rosa, A.: Embedding partial bipartite cycle systems, Utilitas Math. 55 (1999), 129–134.10.1016/S0012-365X(01)00089-9Search in Google Scholar

[72] Lindner, C. C.—Stinson, D. R.: Nesting of cycle systems of even length, J. Combin. Math. Combin. Comput. 8 (1990), 147–157.Search in Google Scholar

[73] Liu, J.: The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory (A) 101 (2003), 20–34.10.1016/S0097-3165(02)00011-0Search in Google Scholar

[74] Ma, J.—Pu, L.—Shen, H.: Cycle decompositions of Kn,nI, SIAM J. Discrete Math. 20 (2006), 603–609.10.1137/050626363Search in Google Scholar

[75] Mendelsohn, E.: On the groups of automorphisms of Steiner triple and quadruple systems, J. Combin. Theory (A) 25 (1978), 97–104.10.1016/0097-3165(78)90072-9Search in Google Scholar

[76] Meszka, M.—Rosa, A.: Cyclic and rotational six-cycle systems, Bull. Inst. Combin. Appl. 87 (2019), 41–46.Search in Google Scholar

[77] Milici, S.—Tuza, Z.: Cycle systems without 2-colorings, J. Combin. Designs 4 (1996), 135–142.10.1002/(SICI)1520-6610(1996)4:2<135::AID-JCD5>3.0.CO;2-GSearch in Google Scholar

[78] Milici, S.—Tuza, Z.: Disjoint blocking sets in cycle systems, Discrete Math. 208/209 (1999), 451–462.10.1016/S0012-365X(99)00099-0Search in Google Scholar

[79] Mishima, M.—Fu, H. L.: Resolvable even-cycle systems with a 1-rotational automorphism, J. Combin. Designs 11 (2003), 394–407.10.1002/jcd.10058Search in Google Scholar

[80] Oates-Williams, S.—Vaughan-Lee, M. R.: A note on small 2-perfect m-cycle systems, m = 6 and 8, Bull. Inst. Combin. Appl. 8 (1993), 33–38.Search in Google Scholar

[81] Pu, L.—Chai, Y.—Bu, H.: Maximum hexagon packing of KvL where L is a 2-regular subgraph, Ars Combin. 112 (2013), 225–238.Search in Google Scholar

[82] Pu, L.—Fang, J.—Ma, J.: Maximum hexagon packing of KvF where F is a spanning forest, J. Math. Res. Appl. 32 (2012), 143–156.Search in Google Scholar

[83] Pu, L.—Shen, H.—Ma, J.—Ling, S.: Cycle systems in the complete bipartite graph plus a one-factor, SIAM J. Discrete Math. 21 (2007), 1083–1092.10.1137/06065461XSearch in Google Scholar

[84] Raines, M. E.—Szaniszló, Z.: Equitable partial cycle systems, Australas. J. Combin. 19 (1999), 149–156.Search in Google Scholar

[85] Rodger, C. A.: Graph decompositions, Le Matematiche (Catania) 45 (1990), 119–140.Search in Google Scholar

[86] Rosa, A.: On cyclic decompositions of the complete graph into (4m + 2)-gons, Mat.-Fyz. Časopis SAV 16 (1966), 349–352.Search in Google Scholar

[87] Rosa, A.—Huang, C.: Another class of balanced graph designs: balanced circuit designs, Discrete Math. 12 (1975), 269–293.10.1016/0012-365X(75)90051-5Search in Google Scholar

[88] Rosa, A.—Znám, Š.: Packing pentagons into complete graphs: how clumsy can you get, Discrete Math. 128 (1994), 305–316.10.1016/0012-365X(94)90121-XSearch in Google Scholar

[89] Smith, B. R.: Decomposing complete equipartite graphs into cycles of length 2p, J. Combin. Designs 16 (2008), 244–252.10.1002/jcd.20173Search in Google Scholar

[90] Smith, B. R.: Cycle decompositions of λ-fold complete equipartite graphs, Australas. J. Combin. 47 (2010), 145–156.Search in Google Scholar

[91] Sotteau, D.: Decompositions of Kmn (Km,n) into cycles (circuits) of length 2k, J. Combin. Theory (B) 30 (1981), 75–81.10.1016/0095-8956(81)90093-9Search in Google Scholar

[92] Stinson, D. R.: The construction of nested cycle systems. In: Coding Theory and Design Theory, Part II, IMA Vol. Math. Appl. 21, Springer, 1990, pp. 362–367.10.1007/978-1-4615-6654-0_26Search in Google Scholar

[93] Vietri, A.: On certain 2-rotational cycle systems of complete graphs, Australas. J. Combin. 37 (2007), 73–79.Search in Google Scholar

[94] Wang, J.: Existence of 2-perfect GD6CSs, Australas. J. Combin. 33 (2005), 67–76.Search in Google Scholar

[95] Wu, L.—Fu, H. L.: A note on cyclic m-cycle systems of Kr(m), Graphs Combin. 22 (2006), 427–432.10.1007/s00373-006-0658-zSearch in Google Scholar

[96] Yazici, E. S.: Metamorphosis of 2-fold 4-cycle systems into maximum packings of 2-fold 6-cycle systems, Australas. J. Combin. 32 (2005), 331–338.Search in Google Scholar

Received: 2020-05-01
Accepted: 2020-07-22
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0003/pdf
Scroll to top button