Home Witt functor of a quadratic order
Article
Licensed
Unlicensed Requires Authentication

Witt functor of a quadratic order

  • Beata Rothkegel EMAIL logo
Published/Copyright: November 20, 2018
Become an author with De Gruyter Brill

Abstract

The main theorem of the paper gives an example of a non-maximal order 𝓞 in a quadratic number field K such that the homomorphism W𝓞 → WK of Witt rings is injective.

Keywords: Witt functor; order
  1. (Communicated by Milan Paštéka)

References

[1] Borevich, Z.—Shafarevich, I.: Number Theory, Nauka, Moscow, 1985 (in Russian).Search in Google Scholar

[2] Ciemała, M.—Szymiczek, K.: On injectivity of natural homomorphisms of Witt rings, Ann. Math. Sil. 21 (2007), 15–30.Search in Google Scholar

[3] Geroldinger, A.—Halter-Koch, F.—Kaczorowski, J.: Non-unique factorizations in orders of global fields, J. Reine Angew. Math. 459 (1995), 89–118.10.1515/crll.1995.459.89Search in Google Scholar

[4] Knebusch, M.: Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/1970, pp. 93–157.10.1007/978-3-642-99987-1Search in Google Scholar

[5] Koprowski, P.: Witt Morphisms, Wydawnictwo Uniwersytetu ĹšlÄ…skiego, Katowice, 2012.Search in Google Scholar

[6] Marshall, M.: Bilinear Forms and Orderings on Commutative Rings. Queen’s Papers in Pure and Appl. Math., Queen’s University, Kingston, Ontario, 1985.Search in Google Scholar

[7] Neukirch, J.: Algebraic Number Theory, Springer-Verlag, New York, Berlin, Heidelberg, 1999.10.1007/978-3-662-03983-0Search in Google Scholar

[8] Rothkegel, B.: The image of the natural homomorphism of Witt rings of orders in a global field, Acta Arith. 160 (2013), 349–384.10.4064/aa160-4-4Search in Google Scholar

[9] Rothkegel, B.—Czogała, A.: Witt equivalence of semilocal Dedekind domains in global fields, Abh. Math. Sem. Univ. Hamburg 77 (2007), 1–24.10.1007/BF03173486Search in Google Scholar

Received: 2017-07-05
Accepted: 2017-11-01
Published Online: 2018-11-20
Published in Print: 2018-12-19

© 2018 Mathematical Institute Slovak Academy of Sciences

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0184/pdf
Scroll to top button