Home On the internal approach to differential equations. 1. The involutiveness and standard basis
Article
Licensed
Unlicensed Requires Authentication

On the internal approach to differential equations. 1. The involutiveness and standard basis

  • Veronika Chrastinová EMAIL logo and Václav Tryhuk
Published/Copyright: November 3, 2016
Become an author with De Gruyter Brill

Abstract

The article treats the geometrical theory of partial differential equations in the absolute sense, i.e., without any additional structures and especially without any preferred choice of independent and dependent variables. The equations are subject to arbitrary transformations of variables in the widest possible sense. In this preparatory Part 1, the involutivity and the related standard bases are investigated as a technical tool within the framework of commutative algebra. The particular case of ordinary differential equations is briefly mentioned in order to demonstrate the strength of this approach in the study of the structure, symmetries and constrained variational integrals under the simplifying condition of one independent variable. In full generality, these topics will be investigated in subsequent Parts of this article.


(Communicated by Andras Ronto)


References

1 Cartan, E.: Sur la structure des groupes infinis de transformations, Ann. Sci. Éc. Norm. Supér. (3) 21 (1904), 153–206; Oeuvrés Complétes II2, Gauthier-Villars, Paris, 1953 (French).10.24033/asens.538Search in Google Scholar

2 Cartan, E.: Sur l'equivalence absolu de certains systémes d'equations différentielles at sur certaines familles de courbes, Bull. Soc. Math. France 42, (1914), 12–48; Oeuvrés Complétes II2, Gauthier-Villars, Paris, 1953.10.24033/bsmf.938Search in Google Scholar

3 Krasil’shchik, I. S.—Lychagin, V. V.—Vinogradov, A. M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Advanced Studies in Contemporary Mathematics 1, Gordon and Breach Science Publishers, New York, New York, 1986 (English. Transl. from the Russian).Search in Google Scholar

4 Kuznetsova, M. N.—Pekcan,—A. Zhiber, A. V.: The Klein-Gordon equation and differential substitutions of the form v = φ(u, ux, uy), SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Article 090, 37 pp..10.3842/SIGMA.2012.090Search in Google Scholar

5 Kamran, N.: Selected Topics in the Geometrical Study of Differential Equations. CBMS Reg. Conf. Ser. Math. 96, Amer. Math. Soc., Providence, RI, 2002.10.1090/cbms/096Search in Google Scholar

6 Chrastina, J.: The formal theory of differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 6, Masaryk University, Brno, 1998.Search in Google Scholar

7 Tryhuk, V.—Chrastinová, V.: Automorphisms of ordinary differential equations, Abstr. Appl. Anal. 2014 (2014), Article ID 482963, 32 pp.. http://dx.doi.org/10.1155/2014/48296310.1155/2014/482963Search in Google Scholar

8 Tryhuk, V.—Chrastinová, V.—Dlouhý, O.: The Lie Group in infinite dimension, Abstr. Appl. Anal. 2011 (2011), Article ID 919538, 35 pp., DOI: 10.1155/2011/919538.10.1155/2011/919538Search in Google Scholar

9 Tryhuk, V.—Chrastinová, V.: On the mapping of jet spaces, J. Nonlinear Math. Phys. 17, (2010), 293–31010.1142/S140292511000091XSearch in Google Scholar

10 Tryhuk, V.—Chrastinová, V.: Automorphisms of curves, J. Nonlinear Math. Phys. 16 (2009), 259–281.10.1142/S1402925109000224Search in Google Scholar

11 Chrastinová, V.: Report on the higher-order contact transformations. In: 7-th Conference on Mathematics and Physics on Technical Universities, Brno (2011, Sept. 22), University of Defence in Brno, Brno, 2011, pp. 176–188.Search in Google Scholar

12 Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Grad. Texts in Math. 150, Springer Verlag, New York-Berlin, 1994.Search in Google Scholar

13 Cartan, E.: Sur l'intégration des systémes d'équations aux différentielles totales, Ann. Sci. Éc. Norm. Supér. (3) 18 (1901), 241–311; Oeuvrés Complétes II1, Gauthier-Villars, Paris, 1953.10.24033/asens.495Search in Google Scholar

14 Cartan, E.: Les systémes différentiels extérieurs et leurs applications geométriques, Hermann & Cie., Paris, 1945; (2nd ed.): Actualités Scientifiques et Industrielles, No. 994, Hermann, Paris, 1971.Search in Google Scholar

15 Bryant, R.—Chern, S. S.—Goldschmidt, H.—Griffiths, P. A.: Exterior Differential Systems. Math. Sci. Res. Inst. Publ. 18, Springer-Verlag, New York-Berlin, 1991.10.1007/978-1-4613-9714-4Search in Google Scholar

16 Serre, J. P.: A letter, Bull. Amer. Math. Soc. 70 (1964), 42–46.Search in Google Scholar

17 Malgrange, B.: Cartan Involutiveness = Mumford Regularity. Contemp. Math. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 193–205.10.1090/conm/331/05911Search in Google Scholar

18 Cartan, E.: Sur les équations de la gravitation d'Einstein, J. de Math. (9) 1 (1922), 141–203; Oeuvrés Complétes II2, Gauthier-Villars, Paris, 1953 (French).Search in Google Scholar

Received: 2013-12-22
Accepted: 2014-4-14
Published Online: 2016-11-3
Published in Print: 2016-8-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Research Article
  2. Effect algebras with a full set of states
  3. Research Article
  4. An approach to orthomodular lattices via lattices with an antitone involution
  5. Research Article
  6. On properties of the free BCI-algebra with one generator
  7. Research Article
  8. The generalized order-k Narayana's cows numbers
  9. Research Article
  10. The irrationality of infinite series of a special kind
  11. Research Article
  12. On skew-commuting mappings in semiprime rings
  13. Research Article
  14. On the subordination and superordination of strongly starlike functions
  15. Research Article
  16. On a subclass of analytic functions involving Sălăgean integral operator
  17. Research Article
  18. Uniqueness of meromorphic functions sharing a value or small function
  19. Research Article
  20. A new inclusion for Bavrin's families of holomorphic functions in n-circular domains
  21. Research Article
  22. Oscillation of nonlinear fourth order mixed neutral differential equations
  23. Research Article
  24. Oscillation results for third order nonlinear mixed neutral differential equations
  25. Research Article
  26. Homoclinic solutions for second order Hamiltonian systems with general potentials
  27. Research Article
  28. A class of fractional impulsive functional differential equations with nonlocal conditions
  29. Research Article
  30. The weighted reverse poincaré type inequality for the difference of two parabolic subsolutions
  31. Research Article
  32. On the well posed solutions for nonlinear second order neutral difference equations
  33. Research Article
  34. Some approximation results for operators of Szász-Mirakjan-Durrmeyer type
  35. Research Article
  36. On the geometry of conditional expectations treated as projections on the L2-space
  37. Research Article
  38. Spectral problems of nonself-adjoint singular discrete Sturm-Liouville operators
  39. Research Article
  40. A necessary condition for the Smith equivalence of G-modules and its sufficiency
  41. Research Article
  42. On the internal approach to differential equations. 1. The involutiveness and standard basis
  43. Research Article
  44. Law of inertia for the factorization of cubic polynomials — the case of discriminants divisible by three
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0198/html?lang=en
Scroll to top button