Startseite A class of fractional impulsive functional differential equations with nonlocal conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A class of fractional impulsive functional differential equations with nonlocal conditions

  • Yiliang Liu EMAIL logo und Jiangfeng Han
Veröffentlicht/Copyright: 3. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we deal with the existence of solutions for the fractional impulsive functional differential equations with nonlocal conditions. Then we build a new comparison theorem and obtain the existence of extremal solutions and quasi-solutions by use of the monotone iterative technique and the method of lower and upper solutions.


This work was supported by NNSF of China Grant Nos. 11271087 and 61263006.



(Communicated by Michal Fečkan)


References

1 Ahmad, B.—Sivasundaram, S.: Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), 134—141.10.1016/j.nahs.2009.09.002Suche in Google Scholar

2 Anguraj, A.—Karthikeyan, P.:Anti-periodic boundary value problem for impulsive fractional integro differential equations, Fract. Calc. Appl. Anal. 13 (2010), 281—293.Suche in Google Scholar

3 Balachandran, K.: Existence of solutions of abstract fractional impulsive seilinear evolution equations, Electron. J. Qual. Theory Differ. Equ. 4 (2010), 1—12.10.14232/ejqtde.2010.1.4Suche in Google Scholar

4 Balachandran, K.—Kiruthika, S.—Trujillo, J. J.: Existence results for fractional impulsive integrodifferential equations in Banach spaces Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1970—1977.10.1016/j.cnsns.2010.08.005Suche in Google Scholar

5 Benchohra, M.—Henderson, J.—Ntouyas, S. K.: Impulsive Differential Equations and Inclusions Hindawi Publishing Corparation, New York, 2006.10.1155/9789775945501Suche in Google Scholar

6 Benchohra,M.—Slimani, B. A.: Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differential Equations 10 (2009), 1—11.Suche in Google Scholar

7 Benchohra, M.—Hamani, S.—Ntouyas, S. K.: Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009), 2391—2396.10.1016/j.na.2009.01.073Suche in Google Scholar

8 Byszewski, L.: L. Byszewski, Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494—505.10.1016/0022-247X(91)90164-USuche in Google Scholar

9 Byszewski, L.—Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40 (1991), 11—19.10.1080/00036819008839989Suche in Google Scholar

10 Byszewski, L.: Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. In: Selected Problems of Mathematics. 50th Anniv. Cracow Univ. Technol. Anniv., Issue 6, Cracow Univ. Technol., Kraków, 1995, pp. 25—33Suche in Google Scholar

11 Chen, F. L.—Chen, A. P.—Wang, X. P.: On the Solutions for Impulsive Fractional Functional Differential Equations, Differ. Equ. Dyn. Syst. 17 (2009), 379—391.10.1007/s12591-009-0027-5Suche in Google Scholar

12 Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993), 630—637.10.1006/jmaa.1993.1373Suche in Google Scholar

13 Fe—Ckan, M.—Zhou, Y.—Wang, J. R.: On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2011), 3050—3060.Suche in Google Scholar

14 Srivastava, A. A.—Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.Suche in Google Scholar

15 Lakshmikantham, V.—Bainov, D. D.—SIMEONOV, P. S.: Theory of impulsive differential equations, World Scientific, Singapore, 1989.10.1142/0906Suche in Google Scholar

16 Liu, Z. H.—Lu, L.: A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator, Electron. J. Qual. Theory Differ. Equ. 70 (2012), 1—16.10.14232/ejqtde.2012.1.70Suche in Google Scholar

17 Liu, Z. H.—Sun, J. H.: Nonlinear boundary value problems of fractional functional integro-differential equations, Comput. Math. Appl. 64 (2012), 3228—3234.10.1016/j.camwa.2012.02.026Suche in Google Scholar

18 Liu, Z. H.—Sun, J. H.: Nonlinear boundary value problems of fractional differential systems, Comput. Math. Appl. 64 (2012), 463—475.10.1016/j.camwa.2011.12.020Suche in Google Scholar

19 Liu, Z. H.—Li, X. W.: Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1362—1373.10.1016/j.cnsns.2012.10.010Suche in Google Scholar

20 Liu, Z. H.—Li, X. W.: On the controllability of impulsive fractional evolution inclusions in Banach spaces, J. Optim. Theory Appl. 156 (2013), 167—182.10.1007/s10957-012-0236-xSuche in Google Scholar

21 Liu, Z. H.—Wang, R.: A note on fractional equations of Volterra type with nonlocal boundary condition, Abstr. Appl. Anal. 2013 (2013), Article ID 432941, 1—8.10.1155/2013/432941Suche in Google Scholar

22 Liu, Z. H.: Anti-periodic solutions to nonlinear evolution equations, J. Funct. Anal. 258 (2010), 2026—2033.10.1016/j.jfa.2009.06.007Suche in Google Scholar

23 N’guérékata, G. M.: A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Anal. 70 (2009), 1873—1876.10.1016/j.na.2008.02.087Suche in Google Scholar

24 Podlubny, I.: Fractional Differential equations. Mathematics in Science and Engineering, Vol. 198, Academic Press, New Tork-Londin-Toronto, 1999.Suche in Google Scholar

25 Shu, X. B.—Lai, Y. Z.—Chen, Y. M.: The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal. 74 (2011), 2003—2011.10.1016/j.na.2010.11.007Suche in Google Scholar

26 Tian, Y. S.—Bai, Z. B.: Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. Math. Appl. 59 (2010), 2601—2609.10.1016/j.camwa.2010.01.028Suche in Google Scholar

27 Wang, G. T.—Ahmad, B.—Zhang, L. H.: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal. 74 (2011), 792—804.10.1016/j.na.2010.09.030Suche in Google Scholar

28 Wang, G. T.—Ahmad, B.—Zhang, L. H.: Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions, Comput. Math. Appl. (2011), DOI: 10.1016/j.camwa.2011.04.004.10.1016/j.camwa.2011.04.004Suche in Google Scholar

29 Wang, H. H.: Existence results for fractional functional differential equations with impulses, J. Appl. Math. Comput. (2010), DOI: 10.1007/s12190-010-0465-9.10.1007/s12190-010-0465-9Suche in Google Scholar

30 Wang, J. R.—Fečkan, M.—Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8 (2011), 345—361.10.4310/DPDE.2011.v8.n4.a3Suche in Google Scholar

31 Wang, J. R.—Zhou, Y.—Medveď, M.: Extremal solutions of Cauchy problems for abstract fractional differential equations, Math. Slovaca 63 (2013), 769—792.10.2478/s12175-013-0134-1Suche in Google Scholar

32 Zhang, L. H.—Wang, G. T.: Existence of solutions for nonlinear fractional differential equations with impulses and anti-periodic boundary conditions, Electron. J. Qual. Theory Differ. Equ. 7 (2011), 1—11.10.14232/ejqtde.2011.1.7Suche in Google Scholar

Received: 2013-1-21
Accepted: 2014-2-3
Published Online: 2016-11-3
Published in Print: 2016-8-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Research Article
  2. Effect algebras with a full set of states
  3. Research Article
  4. An approach to orthomodular lattices via lattices with an antitone involution
  5. Research Article
  6. On properties of the free BCI-algebra with one generator
  7. Research Article
  8. The generalized order-k Narayana's cows numbers
  9. Research Article
  10. The irrationality of infinite series of a special kind
  11. Research Article
  12. On skew-commuting mappings in semiprime rings
  13. Research Article
  14. On the subordination and superordination of strongly starlike functions
  15. Research Article
  16. On a subclass of analytic functions involving Sălăgean integral operator
  17. Research Article
  18. Uniqueness of meromorphic functions sharing a value or small function
  19. Research Article
  20. A new inclusion for Bavrin's families of holomorphic functions in n-circular domains
  21. Research Article
  22. Oscillation of nonlinear fourth order mixed neutral differential equations
  23. Research Article
  24. Oscillation results for third order nonlinear mixed neutral differential equations
  25. Research Article
  26. Homoclinic solutions for second order Hamiltonian systems with general potentials
  27. Research Article
  28. A class of fractional impulsive functional differential equations with nonlocal conditions
  29. Research Article
  30. The weighted reverse poincaré type inequality for the difference of two parabolic subsolutions
  31. Research Article
  32. On the well posed solutions for nonlinear second order neutral difference equations
  33. Research Article
  34. Some approximation results for operators of Szász-Mirakjan-Durrmeyer type
  35. Research Article
  36. On the geometry of conditional expectations treated as projections on the L2-space
  37. Research Article
  38. Spectral problems of nonself-adjoint singular discrete Sturm-Liouville operators
  39. Research Article
  40. A necessary condition for the Smith equivalence of G-modules and its sufficiency
  41. Research Article
  42. On the internal approach to differential equations. 1. The involutiveness and standard basis
  43. Research Article
  44. Law of inertia for the factorization of cubic polynomials — the case of discriminants divisible by three
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0191/pdf
Button zum nach oben scrollen