Home Linear estimation and prediction for the generalized Bilal distribution with application to thermal conductivity data
Article
Licensed
Unlicensed Requires Authentication

Linear estimation and prediction for the generalized Bilal distribution with application to thermal conductivity data

  • Zuber Akhter ORCID logo EMAIL logo , Ehsan Ormoz ORCID logo and S. M. T. K. MirMostafaee ORCID logo
Published/Copyright: October 11, 2025

Abstract

This study develops explicit algebraic expressions for the single and product moments of order statistics derived from the generalized Bilal (GB) distribution. These expressions facilitate the computation of means, variances and covariances of order statistics for sample sizes up to n = 10 with specified parameter values. The derived moments serve as the foundation for constructing the best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) for the location and scale parameters applicable to both complete and type-II right censored samples. Additionally, the study explores the prediction of unobserved order statistics in type-II right censored samples. The theoretical results are validated through a simulation study, while a real data example highlights their practical utility. These findings establish a robust framework for statistical inference based on order statistics from the GB distribution.

MSC 2020: 62G30; 60E05; 62F10

Acknowledgements

The authors would like to thank the editor and the referees.

References

[1] A. M. Abd-Elrahman, Utilizing ordered statistics in lifetime distributions production: a new life-time distribution and applications, JPSS J. Probab. Stat. Sci. 11 (2013), no. 2, 153–164. Search in Google Scholar

[2] A. M. Abd-Elrahman, A new two-parameter lifetime distribution with decreasing, increasing or upside-down bathtub-shaped failure rate, Comm. Statist. Theory Methods 46 (2017), no. 18, 8865–8880. 10.1080/03610926.2016.1193198Search in Google Scholar

[3] A. M. Abd-Elrahman, Reliability estimation under type-II censored data from the generalized Bilal distribution, J. Egyptian Math. Soc. 27 (2019), no. 1, 1–15. 10.1186/s42787-019-0001-5Search in Google Scholar

[4] Z. Akhter, E. M. Almetwally and C. Chesneau, On the generalized Bilal distribution: Some properties and estimation under ranked set sampling, Axioms 11 (2022), no. 4, 173. 10.3390/axioms11040173Search in Google Scholar

[5] Z. Akhter, S. M. T. K. MirMostafaee and H. Athar, On the moments of order statistics from the standard two-sided power distribution, J. Math. Model. 7 (2019), no. 4, 381–398. Search in Google Scholar

[6] Z. Akhter, S. M. T. K. MirMostafaee and E. Ormoz, On the order statistics of exponentiated moment exponential distribution and associated inference, J. Stat. Comput. Simul. 92 (2022), no. 6, 1322–1346. 10.1080/00949655.2021.1991927Search in Google Scholar

[7] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics, Class. Appl. Math. 54, Society for Industrial and Applied Mathematics, Philadelphia, 2008. 10.1137/1.9780898719062Search in Google Scholar

[8] N. Balakrishnan and A. C. Cohen, Order Statistics and Inference: Estimation Methods, Stat. Model. Decision Sci., Academic Press, San Diego, 1991. Search in Google Scholar

[9] J. V. Beck and S. Al-Araji, Investigation of a new simple transient method of thermal property measurement, J. Heat Transfer 96 (1974), no. 1, 59–64. 10.1115/1.3450141Search in Google Scholar

[10] M. Burkschat, Linear estimators and predictors based on generalized order statistics from generalized Pareto distributions, Comm. Statist. Theory Methods 39 (2009), no. 2, 311–326. 10.1080/03610920902746630Search in Google Scholar

[11] A. Chaturvedi, T. Kumari and V. K. Pandey, On the estimation of parameters and reliability functions of a new two-parameter lifetime distribution based on type II censoring, Statistica 80 (2020), no. 3, 201–232. Search in Google Scholar

[12] H. A. David and H. N. Nagaraja, Order Statistics, John Wiley & Sons, Hoboken, 2003. 10.1002/0471722162Search in Google Scholar

[13] A. I. Genç, Moments of order statistics of Topp–Leone distribution, Statist. Papers 53 (2012), no. 1, 117–131. 10.1007/s00362-010-0320-ySearch in Google Scholar

[14] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 2007. Search in Google Scholar

[15] R. K. S. Hankin, hypergeo: The Gauss hypergeometric function, R package version 1.2-14, (2025), https://CRAN.R-project.org/package=hypergeo. Search in Google Scholar

[16] B. Hasselman, nleqslv: Solve systems of nonlinear equations, R package version 3.3.2, (2018), https://CRAN.R-project.org/package=nleqslv. Search in Google Scholar

[17] K. S. Kaminsky and P. I. Nelson, Best linear unbiased prediction of order statistics in location and scale families, J. Amer. Statist. Assoc. 70 (1975), no. 349, 145–150. 10.1080/01621459.1975.10480275Search in Google Scholar

[18] E. H. Lloyd, Least-squares estimation of location and scale parameters using order statistics, Biometrika 39 (1952), no. 1–2, 88–95. 10.1093/biomet/39.1-2.88Search in Google Scholar

[19] N. R. Mann, Optimum estimators for linear functions of location and scale parameters, Ann. Math. Statist. 40 (1969), no. 6, 2149–2155. 10.1214/aoms/1177697292Search in Google Scholar

[20] S. M. T. K. MirMostafaee, On the moments of order statistics coming from the Topp–Leone distribution, Statist. Probab. Lett. 95 (2014), 85–91. 10.1016/j.spl.2014.08.014Search in Google Scholar

[21] D. C. Montgomery, G. C. Runger and N. F. Hubele, Engineering Statistics, John Wiley & Sons, New York, 2010. Search in Google Scholar

[22] S. Nadarajah, Explicit expressions for moments of order statistics, Statist. Probab. Lett. 78 (2008), no. 2, 196–205. 10.1016/j.spl.2007.05.022Search in Google Scholar

[23] H. N. Nagaraja, Moments of order statistics and L-moments for the symmetric triangular distribution, Statist. Probab. Lett. 83 (2013), no. 10, 2357–2363. 10.1016/j.spl.2013.06.028Search in Google Scholar

[24] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2022, http://www.R-project.org/. Search in Google Scholar

[25] X. Shi, Y. Shi and K. Zhou, Estimation for entropy and parameters of generalized Bilal distribution under adaptive Type II progressive hybrid censoring scheme, Entropy 23 (2021), no. 2, Paper No. 206. 10.3390/e23020206Search in Google Scholar PubMed PubMed Central

[26] K. S. Sultan and W. S. AL-Thubyani, Higher order moments of order statistics from the Lindley distribution and associated inference, J. Stat. Comput. Simul. 86 (2016), no. 17, 3432–3445. 10.1080/00949655.2016.1163361Search in Google Scholar

[27] H. Wickham, Reshaping Data with the reshape Package, J. Statist. Software 21 (2007), no. 12, 1–20. 10.18637/jss.v021.i12Search in Google Scholar

[28] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer, Cham, 2016. 10.1007/978-3-319-24277-4_9Search in Google Scholar

[29] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo and H. Yutani, Welcome to the tidyverse, J. Open Source Software 4 (2019), no. 43, Article ID 1686. 10.21105/joss.01686Search in Google Scholar

[30] H. Wickham, R. François, L. Henry and K. Müller, dplyr: A grammar of data manipulation. R package version 1.0.9, (2022), https://CRAN.R-project.org/package=dplyr. Search in Google Scholar

[31] H. Wickham and M. Girlich, tidyr: Tidy messy data. R package version 1.2.0, (2022), https://CRAN.R-project.org/package=tidyr. Search in Google Scholar

[32] A. A. Zghoul, Order statistics from a family of J-shaped distributions, Metron 68 (2010), no. 2, 127–136. 10.1007/BF03263530Search in Google Scholar

Received: 2025-01-22
Revised: 2025-09-10
Accepted: 2025-09-14
Published Online: 2025-10-11

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mcma-2025-2018/pdf
Scroll to top button