Home The plausible extinction of an Andean rodent: a victim of climate change?
Article
Licensed
Unlicensed Requires Authentication

The plausible extinction of an Andean rodent: a victim of climate change?

  • Erika Cuellar Soto ORCID logo , Mauro N. Tammone ORCID logo EMAIL logo , Damián Voglino ORCID logo and Ulyses F.J. Pardiñas ORCID logo
Published/Copyright: June 26, 2025
Mammalia
From the journal Mammalia

Abstract

Climate change is affecting biotic conditions at high altitude, particularly for species with narrow habitat preferences. Among them is the Andean rodent Aconaemys fuscus, known only from its holotype, collected in Argentina more than 150 years ago. Surveys in its purported habitat, including those conducted in 2017, have failed to detect the species and instead have documented the presence of another caviomorph, Ctenomys. Glacier recession, reduced snow precipitation, and increased grazing pressure on highland wetlands in the Central Andes suggest that A. fuscus may have been extirpated from the region due to climate change.


Corresponding author: Mauro N. Tammone, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET-UN Comahue, Bariloche, Río Negro, Argentina, E-mail:

Award Identifier / Grant number: PICT 2020-2068

Acknowledgments

Fieldwork in southwestern Mendoza was supported by Serman & Asociados S.A. and Empresa Mendocina de Energía S.A.J. Pardiñas enthusiastically helped in field activities.

  1. Research ethics: All the procedures involving live animals were consistent with the guidelines of the American Society of Mammalogy for the use of wild mammals in research and were allowed by the Dirección de Fauna de Mendoza under the permit 2018-354-E-GDEMZA.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: ECC and UFJP contributed equally to the conceptualization and writing of this contribution; ECC, MNT, DV, and UFJP actively participated in the fieldwork; MNT made the distribution model; DV made the map and took most of the photographs here employed; MNT and DV discussed and enriched the text. All the authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: Agencia grant (PICT) 2020-2068.

  7. Data availability: The datasets generated and analyzed during the current study are partially included in the present paper or can be requested directly to the corresponding author (those belonging to specific field data obtained in Mendoza); specimens mentioned in this contribution are available in the following public biological repositories: CNP: Colección de Mamíferos, Centro Nacional Patagónico, Puerto Madryn, Chubut; BM: The Natural History, London.

References

Adler, C., Wester, P., Bhatt, I., Huggel, C., Insarov, G.E., Morecroft, M.D., Muccione, V., and Prakash, A. (2022). Cross-chapter paper 5: mountains. In: Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al.. (Eds.), Climate change 2022: impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, NY, USA, pp. 2273–2318.10.1017/9781009325844.022Search in Google Scholar

Bridges, T. ([1844] 1843). On the habits of some of the smaller Chilian rodents. Proc. Zool. Soc. London A 1843: 129–132.Search in Google Scholar

Davies, B.J. and Glasser, N.F. (2017). Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (∼AD 1870) to 2011. J. Glaciol. 58: 1063–1084, https://doi.org/10.3189/2012JoG12J026.Search in Google Scholar

Erb, L.P., Ray, C., and Guralnick, R. (2011). On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology 92: 1730–1735, https://doi.org/10.1890/11-0175.1.Search in Google Scholar PubMed

Espizua, L.E. and Pitte, P. (2009). The Little Ice Age glacier advance in the Central Andes (35°S), Argentina. Palaeogeogr., Palaeoclimatol., Palaeoecol. 281: 345–350, https://doi.org/10.1016/j.palaeo.2008.10.032.Search in Google Scholar

Gallardo, M.H. and Mondaca, F. (2002). The systematics of Aconaemys (Rodentia, Octodontidae) and the distribution of A. sagei in Chile. Mamm. Biol. 67: 105–112, https://doi.org/10.1078/1616-5047-00015.Search in Google Scholar

Guzmán Sandoval, J. (2009). Sistemática de los géneros Aconaemys y Spalacopus (Rodentia; Hystricognathi; Octodontidae): géneros y límites de especies, Magister Dissertation. Universidad de Concepción, Chile, Available at: http://repositorio.udec.cl/jspui/handle/11594/6180.Search in Google Scholar

Huggel, C., Muccione, V., Carey, M., James, R., Jurt, C., and Mechler, R. (2019). Loss and damage in the mountain cryosphere. Reg. Environ. Change 19: 1387–1399, https://doi.org/10.1007/s10113-018-1385-8.Search in Google Scholar

Lopez, P., Chevallier, P., Favier, V., Pouyaud, B., Ordenes, F., and Oerlemans, J. (2010). A regional view of fluctuations in glacier length in southern South America. Glob. Planet. Change 71: 85–108, https://doi.org/10.1016/j.gloplacha.2009.12.009.Search in Google Scholar

Masiokas, M.H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J.L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., et al.. (2020). A review of the current state and recent changes of the andean cryosphere. Front. Earth Sci. 8: 1–27, https://doi.org/10.3389/feart.2020.00099.Search in Google Scholar

Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C., and Beissinger, S.R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322: 261–264, https://doi.org/10.1126/science.1163428.Search in Google Scholar PubMed

Ojeda, A.A., D’Elía, G., and Ojeda, R.A. (2005). Taxonomía alfa de Chelemys y Euneomys (Rodentia, Cricetidae): el número diploide de ejemplares topotípicos de C. macronyx y E. mordax. Mastozool. Neotrop. 12: 79–82.Search in Google Scholar

Ortiz, P.E., Cirignoli, S., Podestá, D., and Pardiñas, U.F.J. (2000). New records of Sigmodontine rodents (Mammalia: Muridae) from High-Andean localities of northwestern Argentina. Biogeographica 76: 133–140.Search in Google Scholar

Osgood, W.H. (1943). The mammals of Chile. Field Museum of Natural History, Zoological Series, Chicago, USA.Search in Google Scholar

Pardiñas, U.F.J., Teta, P., and Udrizar Sauthier, D.E. (2008). Mammalia, Didelphimorphia and Rodentia, southwest of the province of Mendoza, Argentina. Check List 4: 218–225, https://doi.org/10.15560/4.3.218.Search in Google Scholar

Pauli, H. and Halloy, S. (2019). High mountain ecosystems under climate change. In: Oxford research encyclopedia of climate science. Oxford University Press.10.1093/acrefore/9780190228620.013.764Search in Google Scholar

Pearson, O.P. and Lagiglia, H.A. (1992). Fuerte de San Rafael: una localidad tipo ilusoria. Rev. Mus. Hist. Nat. San Rafael, Mendoza XII 1: 35–43.Search in Google Scholar

Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). A maximum entropy modelling of species geographic distributions. Ecol. Modell. 190: 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.Search in Google Scholar

Ramírez-Álvarez, D. and D’Elía, G. (2020). Extensión septentrional de la distribución conocida de Aconaemys (Hystricomorpha, Octodontidae) en Chile. Bol. Mus. Nac. Hist. Nat. (Chile) 69: 19–27, https://doi.org/10.54830/bmnhn.v69.n2.2020.3.Search in Google Scholar

Roach, N. (2016). Aconaemys fuscus, The IUCN Red List of Threatened Species 2016.Search in Google Scholar

Roig, V. (1991). Desertification and distribution of mammals in the Southern Cone of South America. Parte III Conservation policy and management. In: Mares, M.A., and Schmidly, D.J. (Eds.), Latin American mammalogy. History, biodiversity and conservation. University of Oklahoma Press, USA, pp. 239–279.Search in Google Scholar

Saavedra, B. and Simonetti, J.A. (2003). Holocene distribution of Octodontid (sic) rodents in central Chile. Rev. Chil. Hist. Nat. 76: 383–389, https://doi.org/10.4067/s0716-078x2003000300004.Search in Google Scholar

Simonetti, J.A. (1994). Impoverishement and nestedness in caviomorph assemblages. J. Mammal. 75: 979–984, https://doi.org/10.2307/1382479.Search in Google Scholar

Tammone, M.N. (2024). A new species of Ctenomys (Rodentia, Ctenomyidae) from the pre-Andean regions of Mendoza Province, Argentina. J. Mammal. 105: 609–620, https://doi.org/10.1093/jmammal/gyae024.Search in Google Scholar

Tammone, M.N. and Pardiñas, U.F.J. (2021). Valle de las Cuevas and Fuerte de San Rafael (Mendoza, Argentina), two elusive type localities of rodents revisited. Mastozool. Neotrop. 28: e0500, https://doi.org/10.31687/saremMN.21.28.1.0.02.Search in Google Scholar

Tammone, M.N., Lacey, E.A., Hajduk, A., Christie, M., and Pardiñas, U.F.J. (2016). The Quaternary record of Euneomys (Mammalia, Rodentia, Cricetidae) from northwestern Patagonia: evidence for regional extinction. J. Vertebr. Paleontol. 36: e1212363, https://doi.org/10.1080/02724634.2016.1212363.Search in Google Scholar

Tammone, M.N., Lacey, E.A., Voglino, D., Cuéllar Soto, E., and Pardiñas, U.F.J. (2021). Disentangling the complex alpha taxonomy of Andean populations of Ctenomys (Rodentia: Ctenomyidae) from northern Patagonia: the need for extensive sampling in heterogeneous landscapes. J. Mammal. 102: 1405–1425, https://doi.org/10.1093/jmammal/gyab089.Search in Google Scholar

Thomas, O. (1906). Mammals. The history of the collections contained in the natural history departments of the British Museum. Vol. II, separate historical accounts of the several collections included in the Department of Zoology. William Clowes and Sons, Limited, London, pp. 3–66.Search in Google Scholar

Thomas, O. (1917). A new species of Aconaemys from Southern Chili. Ann. Mag. Nat. Hist. Series 8: 281–282.10.1080/00222931709486937Search in Google Scholar

Thomas, O. (1918). Two new Tuco-tucos from Argentina. Ann. Mag. Nat. Hist. 9th Ser. 1: 38–40, https://doi.org/10.1080/00222931808562284.Search in Google Scholar

Thomas, O. (1927). A selection of lectotypes of American rodents in the Collection of the British Museum. Ann. Mag. Nat. Hist. 9th Ser. 19: 545–554, https://doi.org/10.1080/00222932708655531.Search in Google Scholar

Verzi, D.H., Díaz, M.M., and Barquez, R.M. (2015). Genus Aconaemys Ameghino, 1891. In: Patton, J.L., Pardiñas, U.F.J., and D’Elia, G. (Eds.), Mammals of South America. The University of Chicago Press, Chicago, pp. 1025–1029.Search in Google Scholar

Villalba, R. (1994). Tree-ring and glacial evidence for the medieval warm epoch and the little ice age in southern South America. Clim. Change 26: 183–197, https://doi.org/10.1007/bf01092413.Search in Google Scholar

Waterhouse, G.R. ([1842] 1841). On a new genus of rodents allied to the genera Poephagomys, Ctenomys, & c. Proc. Zool. Soc. London 1841: 89–92.Search in Google Scholar

Waterhouse, G.R. (1848). A natural history of the Mammalia. Vol. II. Containing the order Rodentia, or gnawing mammalia. Hippolyte Baillière Publisher, London, UK.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/mammalia-2025-0040).


Received: 2025-04-09
Accepted: 2025-06-10
Published Online: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2025-0040/html
Scroll to top button