Trophic niche overlap among Neotropical carnivores in a silvicultural landscape
-
Ana Beatriz de Almeida
, Marcelo Magioli
, Carla Gheler-Costa
, Luciano Martins Verdade
, Thiago Simon Marques
, Letícia de Cássia Gilli de Lima
and Thomas Püttker
Abstract
To enable long-term coexistence, species need to differentiate at least one of the three main dimensions of the ecological niche (temporal, spatial, or trophic dimension). Here, we investigated whether mammalian predators (Chrysocyon brachyurus, Cerdocyon thous, Lycalopex vetulus, and Puma concolor) follow the prediction of trophic niche partitioning, which is expected when partitioning of food resources represents an important mechanism for coexistence. We predicted low niche overlap in general and low between P. concolor and the other species. We analyzed 207 fecal samples collected at a landscape composed of forest remnants immersed in Eucalyptus plantations. Food items (animals and plants) were identified using exoskeletons, feathers, scales, teeth, hair, and seeds. We calculated the frequency and percentage of occurrence of food items, niche breadth, and niche overlap between pairs of species. Prey size was similar among all predators, consuming mainly small-sized prey (<1 kg). However, niche breadth was larger for smaller carnivores compared to larger ones. No species pair showed significantly lower niche overlap than expected by chance. Our study provided detailed information on trophic resource use of sympatric carnivores, showing that trophic niche partitioning seems not to be crucial for the coexistence of carnivores in the study area.
Funding source: Fundação de Amparo à Pesquisa do Estado de São Paulo
Award Identifier / Grant number: 2017/01304-4 coordinated by Luciano M. Verdade
Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Award Identifier / Grant number: 88882.430854/2019-01
Acknowledgments
We would like to thank Prof. Dr. Alexandre Percequillo and Prof. Vilma Almeida for helping to identify species of mammals and plants, respectively. We are grateful to Fernanda D. Abra (ViaFAUNA: “http://www.viafauna.com.br/”) who kindly provided the Chrysocyon brachyurus, Lycalopex vetulus, and Puma concolor drawings used in Figure 3.
-
Author contributions: All authors contributed to the study. Conceptualization: Ana Beatriz de Almeida, Carla Gheler-Costa, Luciano Martins Verdade, Thiago Simon Marques, and Thomas Püttker; Data collection: Ana Beatriz de Almeida, Luciano Martins Verdade, Carla Gheler-Costa and Letícia de Cássia Gilli de Lima. Methodology (analysis): Ana Beatriz de Almeida, Thomas Püttker, and Marcelo Magioli. Writing – original draft preparation: Ana Beatriz de Almeida. Writing – review and editing: Ana Beatriz de Almeida, Carla Gheler-Costa, Luciano Martins Verdade, Thiago Simon Marques, and Thomas Püttker. Funding acquisition: Ana Beatriz de Almeida and Luciano Martins Verdade. Supervision: Thomas Püttker. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
-
Research funding: We are grateful for financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) project nº 2017/01304-4 coordinated by Luciano M. Verdade, for costs of field collections and equipment (microscope and magnifying glass).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
-
Research ethics: Ethical approval is not applicable.
References
Abreu, M.S.L., Christoff, A.U., and Vieira, E.M. (2011). Identification of marsupials from southern Brazil using microstructure of guard-hairs. Biota Neotropica 11: 391–400, https://doi.org/10.1590/s1676-06032011000300031.Search in Google Scholar
Abreu, E.F., Casali, D., Costa-Araújo, R., Garbino, G.S.T., Libardi, G.S., Loretto, D., Loss, A.C., Marmontel, M., Moras, L.M., Nascimento, M.C., et al.. (2021). Lista de Mamíferos do Brasil (2021-2) [Data set]. Zenodo, Brazil.Search in Google Scholar
Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6: 1109–1122, https://doi.org/10.1046/j.1461-0248.2003.00530.x.Search in Google Scholar
Azevedo, F.C., Lemos, F.G., Freitas‐Junior, M.C., Rocha, D.G., and Azevedo, F.C.C. (2018). Puma activity patterns and temporal overlap with prey in a human‐modified landscape at Southeastern Brazil. J. Zool. 305: 246–255, https://doi.org/10.1111/jzo.12558.Search in Google Scholar
Banks-Leite, C., Pardini, R., Tambosi, L.R., Pearse, W.D., Bueno, A.A., Bruscagin, R.T., Condez, T.H., Dixo, M., Igari, A.T., Martensen, A.C., et al.. (2014). Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science, 345, 1041-1045, https://doi.org/10.1126/science.1255768.Search in Google Scholar PubMed
Barrull, J., Mate, I., Ruiz-Olmo, J., Casanovas, J.G., Gosàlbez, J., and Salicrú, M. (2014). Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: an integrated study based on camera trapping and diet. Mamm. Biol. 79: 123–131, https://doi.org/10.1016/j.mambio.2013.11.004.Search in Google Scholar
Begnini, R.M., da Silva, F.R., and Castellani, T.T. (2013). Fenologia reprodutiva de Syagrus romanzoffiana (Cham.) glassman (Arecaceae) em Floresta Atlântica no sul do Brasil. Biotemas 26: 53–60.10.5007/2175-7925.2013v26n4p53Search in Google Scholar
Bianchi, R.D.C., Olifiers, N., Gompper, M.E., and Mourao, G. (2016). Niche partitioning among mesocarnivores in a Brazilian wetland. PLoS One 11: e0162893, https://doi.org/10.1371/journal.pone.0162893.Search in Google Scholar PubMed PubMed Central
Bogoni, J.A., Pires, J.S.R., Graipel, M.E., Peroni, N., and Peres, C.A. (2018). Wish you were here: how defaunated is the Atlantic Forest biome of its medium-to large-bodied mammal fauna? PLoS One 13: e0204515, https://doi.org/10.1371/journal.pone.0204515.Search in Google Scholar PubMed PubMed Central
Bueno, A.D.A. and Motta-Junior, J.C. (2004). Food habits of two syntopic canids, the maned wolf (Chrysocyon brachyurus) and the crab-eating fox (Cerdocyon thous), in southeastern Brazil. Rev. Chil. Hist. Nat. 77: 5–14.10.4067/S0716-078X2004000100002Search in Google Scholar
Bueno, A.D. and Motta-Junior, J.C. (2009). Feeding habits of the maned wolf, Chrysocyon brachyurus (Carnivora: Canidae), in southeast Brazil. Stud. Neotrop. Fauna Environ. 44: 67–75, https://doi.org/10.1080/01650520902891413.Search in Google Scholar
Di Bitetti, M.S., De Angelo, C.D., Di Blanco, Y.E., and Paviolo, A. (2010). Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 36: 403–412, https://doi.org/10.1016/j.actao.2010.04.001.Search in Google Scholar
Campos, B.M., Charters, J.D., and Verdade, L.M. (2018). Diversity and distribution patterns of medium to large mammals in a silvicultural landscape in south-eastern Brazil. iFor. Biogeosci. For. 11: 802–808, https://doi.org/10.3832/ifor2721-011.Search in Google Scholar
Campos, C.B., Esteves, C.F., Ferraz, K., Crawshaw, P.G., and Verdade, L.M. (2007). Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. J. Zool. 273: 14–20, https://doi.org/10.1111/j.1469-7998.2007.00291.x.Search in Google Scholar
Carbone, C. and Gittleman, J.L. (2002). A common rule for the scaling of carnivore density. Science 295: 2273–2276, https://doi.org/10.1126/science.1067994.Search in Google Scholar PubMed
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Systemat. 31: 343–366, https://doi.org/10.1146/annurev.ecolsys.31.1.343.Search in Google Scholar
Colman, N.J., Crowther, M.S., and Letnic, M. (2015). Macroecological patterns in mammal abundances provide evidence that an apex predator shapes forest ecosystems by suppressing herbivore and mesopredator abundance. J. Biogeogr. 42: 1975–1985, https://doi.org/10.1111/jbi.12563.Search in Google Scholar
Correa, C.E., Albrecht, M.P., and Hahn, N.S. (2011). Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiaba River basin. Neotrop. Ichthyol. 9: 637–646, https://doi.org/10.1590/s1679-62252011000300017.Search in Google Scholar
Crawshaw, P.G.Jr and Quigley, H.B. (2002). Hábitos alimentarios del jaguar y el puma en el Pantanal, Brasil, con implicaciones para su manejo y conservación. El jaguar en el nuevo milenio. México Fondo de Cultura Económica, UNAM, WCS, pp. 223–236.Search in Google Scholar
Cruz, L.R., Muylaert, R.L., Galetti, M., and Pires, M.M. (2022). The geography of diet variation in Neotropical Carnivora. Mamm Rev. 52: 112–128, https://doi.org/10.1111/mam.12266.Search in Google Scholar
Davis, M.L., Kelly, M.J. and Stauffer, D.F. (2011). Carnivore co-existence and habitat use in the mountain pine ridge forest reserve, Belize. Anim. Conserv. 14: 56–65, https://doi.org/10.1111/j.1469-1795.2010.00389.x.Search in Google Scholar
De Angelo, C., Paviolo, A., and Di Bitetti, M. (2011). Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Parana Atlantic Forest. Divers. Distrib. 17: 422–436, https://doi.org/10.1111/j.1472-4642.2011.00746.x.Search in Google Scholar
De Melo, L.F.B., Sabato, M.A.L., Magni, E.M.V., Young, R.J., and Coelho, C.M. (2007). Secret lives of maned wolves (Chrysocyon brachyurus Illiger 1815): as revealed by GPS tracking collars. J. Zool. 271: 27–36, https://doi.org/10.1111/j.1469-7998.2006.00176.x.Search in Google Scholar
De Moura, T.M., Oliveira, G.C.X., and Chaves, L.J. (2010). Correlation between flowering, frutification and environmental variables in Solanum lycocarpum A. St.-Hil, Solanaceae. Biosci. J. 26: 457–462.Search in Google Scholar
Dias, D.D. and Bocchiglieri, A. (2016). Trophic and spatio-temporal niche of the crab-eating fox, Cerdocyon thous (Linnaeus, 1766) (Carnivora: Canidae), in a remnant of the Caatinga in northeastern Brazil. Mammalia 80: 281–291.10.1515/mammalia-2014-0108Search in Google Scholar
Dotta, G. and Verdade, L.M. (2007). Trophic categories in a mammal assemblage: diversity in an agricultural landscape. Biota Neotropica 7: 287–292.10.1590/S1676-06032007000200031Search in Google Scholar
Dotta, G. and Verdade, L.M. (2011). Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia 75: 345–352, https://doi.org/10.1515/mamm.2011.049.Search in Google Scholar
Faria-Corrêa, M., Balbueno, R.A., Vieira, E.M., and de Freitas, T.R. (2009). Activity, habitat use, density, and reproductive biology of the crab-eating fox (Cerdocyon thous) and comparison with the pampas fox (Lycalopex gymnocercus) in a Restinga area in the southern Brazilian Atlantic Forest. Mamm. Biol. 74: 220–229, https://doi.org/10.1016/j.mambio.2008.12.005.Search in Google Scholar
Ferraz, K., de Siqueira, M.F., Martin, P.S., Esteves, C.F., and do Couto, H.T.Z. (2010). Assessment of Cerdocyon thous distribution in an agricultural mosaic, southeastern Brazil. Mammalia 74: 275–280, https://doi.org/10.1515/mamm.2010.036.Search in Google Scholar
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., et al.. (2005). Global consequences of land use. Science 309: 570–574, https://doi.org/10.1126/science.1111772.Search in Google Scholar PubMed
Gheler-Costa, C., Vettorazzi, C.A., Pardini, R., and Verdade, L.M. (2012). The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia 76: 185–191, https://doi.org/10.1515/mammalia-2011-0109.Search in Google Scholar
Gheler-Costa, C., Botero, G.P., Reia, L., de Cassia Gilli, L., Comin, F.H., and Verdade, L.M. (2018). Ecologia trófica de onça-parda (Puma concolor) em paisagem agrícola. Revista em Agronegócio e Meio Ambiente 11: 203–225, https://doi.org/10.17765/2176-9168.2018v11n1p203-225.Search in Google Scholar
Gibbs, H.K., Ruesch, A.S., Achard, F., Clayton, M.K., Holmgren, P., Ramankutty, N., and Foley, J.A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. U. S. A 107: 16732–16737, https://doi.org/10.1073/pnas.0910275107.Search in Google Scholar PubMed PubMed Central
Giordano, C., Lyra-Jorge, M.C., Miotto, R.A. and Pivello, V.R. (2018). Food habits of three carnivores in a mosaic landscape of Sao Paulo state, Brazil. Eur. J. Wildl. Res. 64: 5, https://doi.org/10.1007/s10344-018-1172-3.Search in Google Scholar
Gotelli, N.J., Hart, E.M., and Ellison, A.M. (2015). EcoSimR: null model analysis for ecological data. R package version 0.1.0. Available at: <http://github.com/gotellilab/EcoSimR>.Search in Google Scholar
Grecchi, R.C., Gwyn, Q.H.J., Benie, G.B., Formaggio, A.R., and Fahl, F.C. (2014). Land use and land cover changes in the Brazilian Cerrado: a multidisciplinary approach to assess the impacts of agricultural expansion. Appl. Geogr. 55: 300–312, https://doi.org/10.1016/j.apgeog.2014.09.014.Search in Google Scholar
Hunter, J. and Caro, T. (2008). Interspecific competition and predation in American carnivore families. Ethol. Ecol. Evol. 20: 295–324, https://doi.org/10.1080/08927014.2008.9522514.Search in Google Scholar
Hurlbert, S.H. (1978). The measurement of niche overlap and some relatives. Ecology 59: 67–77, https://doi.org/10.2307/1936632.Search in Google Scholar
Jacomo, A., Silveira, L., and Diniz, J.A.F. (2004). Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in central Brazil. J. Zool. 262: 99–106, https://doi.org/10.1017/s0952836903004473.Search in Google Scholar
Juarez, K.M. and Marinho, J. (2002). Diet, habitat use, and home ranges of sympatric canids in central Brazil. J. Mammal. 83: 925–933, https://doi.org/10.1644/1545-1542(2002)083<0925:dhuahr>2.0.co;2.10.1644/1545-1542(2002)083<0925:DHUAHR>2.0.CO;2Search in Google Scholar
Kauffman, M.J., Brodie, J.F., and Jules, E.S. (2010). Are wolves saving Yellowstone’s aspen? A landscape‐level test of a behaviorally mediated trophic cascade. Ecology 91: 2742–2755, https://doi.org/10.1890/09-1949.1.Search in Google Scholar
Kerr, J.T. and Deguise, I. (2004). Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7: 1163–1169, https://doi.org/10.1111/j.1461-0248.2004.00676.x.Search in Google Scholar
Kotviski, B.M., Facure, K.G., Azevedo, F.C., Freitas-Junior, M.C., and Lemos, F.G. (2019). Trophic niche overlap and resource partitioning among wild canids in an anthropizes neotropical ecotone. Mastozool. Neotrop. 26: 368–376, https://doi.org/10.31687/saremmn.19.26.2.0.29.Search in Google Scholar
Letnic, M., Greenville, A., Denny, E., Dickman, C.R., Tischler, M., Gordon, C., and Koch, F. (2011). Does a top predator suppress the abundance of an invasive mesopredator at a continental scale? Global Ecol. Biogeogr. 20: 343–353, https://doi.org/10.1111/j.1466-8238.2010.00600.x.Search in Google Scholar
Letnic, M., Ritchie, E.G., and Dickman, C.R. (2012). Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol. Rev. 87: 390–413, https://doi.org/10.1111/j.1469-185x.2011.00203.x.Search in Google Scholar
Levins, R. (1968). Evolution in changing environments. Princeton University Press, Princeton, New Jersey, USA.10.1515/9780691209418Search in Google Scholar
Maehr, D.S. and Brady, J.R. (1986). Food-habits of bobcats in Florida. J. Mammal. 67: 133–138, https://doi.org/10.2307/1381009.Search in Google Scholar
Magioli, M. and Ferraz, K. (2021). Deforestation leads to prey shrinkage for an apex predator in a biodiversity hotspot. Mammal Res. 66: 245–255, https://doi.org/10.1007/s13364-021-00556-9.Search in Google Scholar
Magioli, M., Moreira, M.Z., Ferraz, K.M.B., Miotto, R.A., de Camargo, P.B., Rodrigues, M.G., Canhoto, M.C.D., and Setz, E.F. (2014). Stable isotope evidence of Puma concolor (felidae) feeding patterns in agricultural landscapes in southeastern Brazil. Biotropica 46: 451–460, https://doi.org/10.1111/btp.12115.Search in Google Scholar
Magioli, M., Ferraz, K.M.P.M.D.B., Setz, E.Z.F., Percequillo, A.R., Rondon, M.V.D.S.S., Kuhnen, V.V., Canhoto, M.C.d.S., dos Santos, K.E.A., Kanda, C.Z., Fregonezi, G.d.L., et al.. (2016). Connectivity maintain mammal assemblages functional diversity within agricultural and fragmented landscapes. Eur. J. Wildl. Res. 62: 431–446, https://doi.org/10.1007/s10344-016-1017-x. .Search in Google Scholar
Magioli, M., Moreira, M.Z., Fonseca, R.C.B., Ribeiro, M.C., Rodrigues, M.G., and Ferraz, K. (2019). Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. U. S. A 116: 18466–18472, https://doi.org/10.1073/pnas.1904384116.Search in Google Scholar PubMed PubMed Central
Magioli, M., Villar, N., Jorge, M.L., Biondo, C., Keuroghlian, A., Bradham, J., Pedrosa, F., Costa, V., Moreira, M.Z., Ferraz, K., et al.. (2022). Dietary expansion facilitates the persistence of a large frugivore in fragmented tropical forests. Anim. Conserv. 25: 582–593, https://doi.org/10.1111/acv.12766.Search in Google Scholar
Manlick, P.J. and Pauli, J.N. (2020). Human disturbance increases trophic niche overlap in terrestrial carnivore communities. Proc. Natl. Acad. Sci. U. S. A 117: 26842–26848, https://doi.org/10.1073/pnas.2012774117.Search in Google Scholar PubMed PubMed Central
Martin, P.S., Gheler-Costa, C., and Verdade, L.M. (2009). Microstructures of the hair of non-volant small mammals: key to the identification of species from agroecosystems of the State of São Paulo, Brazil. Biota Neotropica 9: 241.10.1590/S1676-06032009000100022Search in Google Scholar
Martin, P.S., Gheler-Costa, C., Lopes, P.C., Rosalino, L.M., and Verdade, L.M. (2012). Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For. Ecol. Manag. 282: 185–195, https://doi.org/10.1016/j.foreco.2012.07.002.Search in Google Scholar
Michel, N., Burel, F., and Butet, A. (2006). How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecol.-Int. J. Ecol. 30: 11–20, https://doi.org/10.1016/j.actao.2005.12.006.Search in Google Scholar
Millan, C.H., Develey, P.F., and Verdade, L.M. (2015). Stand-level management practices increase occupancy by birds in exotic Eucalyptus plantations. For. Ecol. Manag. 336: 174–182, https://doi.org/10.1016/j.foreco.2014.10.005.Search in Google Scholar
Miranda, G.H.B., Rodrigues, F.H.G., and Paglia, A.P. (Eds.) (2014). Guia de identificação de pelos de mamíferos brasileiros. Editora Ciências Forenses, Brasília, p. 112.Search in Google Scholar
Nagy-Reis, M.B., Iwakami, V.H.S., Estevo, C.A., and Setz, E.Z.F. (2019). Temporal and dietary segregation in a neotropical small-felid assemblage and its relation to prey activity. Mamm. Biol. 95: 1–8, https://doi.org/10.1016/j.mambio.2018.12.005.Search in Google Scholar
Palomares, F., Gonzalez-Borrajo, N., Chavez, C., Rubio, Y., Verdade, L.M., Monsa, R., Harmsen, B., Adrados, B., and Zanin, M. (2018). Scraping marking behaviour of the largest Neotropical felids. Peer. J. 6: e4983, https://doi.org/10.7717/peerj.4983.Search in Google Scholar PubMed PubMed Central
Pardini, R., Faria, D., Accacio, G.M., Laps, R.R., Mariano-Neto, E., Paciencia, M.L.B., Dixo, M. and Baumgarten, J. (2009). The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol. Conserv. 142: 1178–1190, https://doi.org/10.1016/j.biocon.2009.02.010.Search in Google Scholar
Pardini, R., Bueno, A.D.A., Gardner, T.A., Prado, P.I., and Metzger, J.P. (2010). Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5: e13666, https://doi.org/10.1371/journal.pone.0013666.Search in Google Scholar PubMed PubMed Central
Pedo, E., Tomazzoni, A.C., Hartz, S.M., and Christoff, A.U. (2006). Diet of crab-eating fox, Cerdocyon thous (Linnaeus) (Carnivora, Canidae), in a suburban area of southern Brazil. Rev. Bras. Zool. 23: 637–641, https://doi.org/10.1590/s0101-81752006000300005.Search in Google Scholar
Pereira, A.D., Bogoni, J.A., Bazilio, S., and Orsi, M.L. (2021). Mammalian defaunation across the Devonian kniferidges and meridional plateaus of the Brazilian Atlantic Forest. Biodivers. Conserv. 30: 4005–4022, https://doi.org/10.1007/s10531-021-02288-3.Search in Google Scholar
Pianka, E.R. (1974). Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. U. S. A 71: 2141–2145, https://doi.org/10.1073/pnas.71.5.2141.Search in Google Scholar PubMed PubMed Central
Püttker, T., Bueno, A.D., Prado, P.I., and Pardini, R. (2015). Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos 124: 206–215, https://doi.org/10.1111/oik.01018.Search in Google Scholar
Quadros, J. and Monteiro, E.L.D. (2006a). Collecting and preparing mammal hairs for identification with optical microscopy. Rev. Bras. Zool. 23: 274–278, https://doi.org/10.1590/s0101-81752006000100022.Search in Google Scholar
Quadros, J. and Monteiro, E.L.D. (2006b). Review of concepts, microstructural patterns and nomenclature proposal to the guard-hairs of Brazilian mammals. Rev. Bras. Zool. 23: 279–292, https://doi.org/10.1590/s0101-81752006000100023.Search in Google Scholar
Rocha-Mendes, F., Mikich, S.B., Quadros, J., and Pedro, W.A. (2010). Feeding ecology of carnivores (Mammalia, Carnivora) in Atlantic forest remnants, southern Brazil. Biota Neotropica 10: 21–30, https://doi.org/10.1590/s1676-06032010000400001.Search in Google Scholar
da Silva, F.R., Begnini, R.M., Lopes, B.C., and Castellani, T.T. (2011). Seed dispersal and predation in the palm Syagrus romanzoffiana on two islands with different faunal richness, southern Brazil. Stud. Neotrop. Fauna Environ. 46: 163–171, https://doi.org/10.1080/01650521.2011.617065.Search in Google Scholar
Schoener, T.W. (1982). The controversy over interspecific competition. Am. Sci. 70: 586–595.Search in Google Scholar
Seveque, A., Gentle, L.K., Lopez-Bao, J.V., Yarnell, R.W., and Uzal, A. (2020). Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol. Rev. 95: 1689–1705, https://doi.org/10.1111/brv.12635.Search in Google Scholar PubMed
Silveira, F., Sbalqueiro, I.J., and Monteiro, E.L.D. (2013). Identification of the Brazilian species of Akodon (rodentia: Cricetidae: Sigmodontinae) through the microstructure of the hair. Biota Neotropica 13: 339–345, https://doi.org/10.1590/s1676-06032013000100033.Search in Google Scholar
Smith, J.A., Thomas, A.C., Levi, T., Wang, Y.W., and Wilmers, C.C. (2018). Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127: 890–901, https://doi.org/10.1111/oik.04592.Search in Google Scholar
Sundquist, M. and Sundquist, F. (2002). Wild cats of the world. University of Chicago Press, Chicago.Search in Google Scholar
Tabarelli, M., Aguiar, A.V., Ribeiro, M.C., Metzger, J.P., and Peres, C.A. (2010). Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol. Conserv. 143: 2328–2340, https://doi.org/10.1016/j.biocon.2010.02.005.Search in Google Scholar
Terborgh, J., Lopez, L., Nunez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M., Ascanio, R., Adler, G.H., Lambert, T.D., et al.. (2001). Ecological meltdown in predator-free forest fragments. Science 294: 1923–1926, https://doi.org/10.1126/science.1064397.Search in Google Scholar PubMed
Trovati, R.G., de Campos, C.B., and de Brito, B.A. (2008). Notes on convergence and divergence feed of canids and felids (Mammalia: Carnivora) sympatric in the Brazilian Cerrado. Neotrop. Biol. and Conserv. 3: 95–100.Search in Google Scholar
Vasquez, L.C., Marques, T.S., de Abreu, E.F., Cioci, R., Pina, C.I., and Verdade, L.M. (2021). Diversity of small mammals on the early second commercial cycle of Eucalyptus plantations in southeast Brazil. For. Ecol. Manag. 489: 119052, https://doi.org/10.1016/j.foreco.2021.119052.Search in Google Scholar
Vavra, M., Parks, C.G. and Wisdom, M.J. (2007). Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. For. Ecol. Manag. 246: 66–72, https://doi.org/10.1016/j.foreco.2007.03.051.Search in Google Scholar
Verdade, L.M., Rosalino, L.M., Gheler-Costa, C., Pedroso, N.M., and Lyra-Jorge, M.C. (2011). Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia 75: 345–352.10.1515/MAMM.2011.049Search in Google Scholar
Verdade, L.M., Moral, R.A., Calaboni, A., do Amaral, M., Martin, P.S., Amorim, L.S., Gheler-Costa, C., and Pina, C.I. (2020). Temporal dynamics of small mammals in Eucalyptus plantations in Southeast Brazil. Global Ecol. Conserv. 24: e01217, https://doi.org/10.1016/j.gecco.2020.e01217.Search in Google Scholar
Vickery, J., Carter, N., and Fuller, R.J. (2002). The potential value of managed cereal field margins as foraging habitats for farmland birds in the UK. Agric. Ecosyst. Environ. 89: 41–52, https://doi.org/10.1016/s0167-8809(01)00317-6.Search in Google Scholar
Vieira, E.M. and Port, D. (2007). Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272: 57–63, https://doi.org/10.1111/j.1469-7998.2006.00237.x.Search in Google Scholar
Wallach, A.D., Johnson, C.N., Ritchie, E.G., and O’Neill, A.J. (2010). Predator control promotes invasive dominated ecological states. Ecol. Lett. 13: 1008–1018, https://doi.org/10.1111/j.1461-0248.2010.01492.x.Search in Google Scholar PubMed
Wilmers, C.C., Crabtree, R.L., Smith, D.W., Murphy, K.M., and Getz, W.M. (2003). Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72: 909–916, https://doi.org/10.1046/j.1365-2656.2003.00766.x.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Ecology
- The extirpation of medium and large mammal species from the Ehotilé Islands National Park, south-eastern Côte d’Ivoire
- Trophic niche overlap among Neotropical carnivores in a silvicultural landscape
- The diet of commensal Crocidura olivieri (Soricomorpha: Soricidae): predation on co-existing invasive Mus musculus suggested by DNA metabarcoding data
- Abundance and activity patterns of the endangered margay (Leopardus wiedii) in temperate forest remnants from the avocado landscape in Mexico
- Bone growth and body weight patterns in juvenile raccoon dogs in Wakayama Prefecture, western Japan
- Bats (Mammalia, Chiroptera) and bat flies (Diptera, Streblidae) found in the largest sandstone cave of Brazil
- Occurrence and population status of the pond bat (Myotis dasycneme) in Northwest Russia
- Conservation
- Distribution and conservation status of the endemic Nilgiri marten (Martes gwatkinsii)
- Enlarging the knowledge on the Ecuadorean rodent Rhagomys septentrionalis (Cricetidae: Sigmodontinae) with remarks on rarity in sigmodontines
- New records of the Annamite striped rabbit in Ngoc Linh, Quang Nam and Kon Tum provinces, Vietnam
- Ethology
- New observations on chimpanzee accumulative stone throwing in Boé, Guinea Bissau
- Potential opportunistic behavior of crab-eating fox Cerdocyon thous (Carnivora, Canidae) in Itapuã State Park, RS, Brazil: possible cases of necrophagy
- Digging deep: hoary marmots (Marmota caligata) use refuge burrows excavated by grizzly bears (Ursus arctos)
- Biogeography
- New records of Myotis bakeri (Chiroptera: Vespertilionidae), and preliminary evidence of a new zoogeographic pattern
- Taxonomy/Phylogeny
- The first identification of Tula orthohantavirus in forest dormice (Rodentia: Gliridae) from Iran
- Two cases of mole shrews (Anourosorex squamipes) with albinism in southwestern China
- Corrigendum
- Corrigendum to: Annotations on the taxonomy of the opossums (Didelphimorphia: Didelphidae) of Honduras
Articles in the same Issue
- Frontmatter
- Ecology
- The extirpation of medium and large mammal species from the Ehotilé Islands National Park, south-eastern Côte d’Ivoire
- Trophic niche overlap among Neotropical carnivores in a silvicultural landscape
- The diet of commensal Crocidura olivieri (Soricomorpha: Soricidae): predation on co-existing invasive Mus musculus suggested by DNA metabarcoding data
- Abundance and activity patterns of the endangered margay (Leopardus wiedii) in temperate forest remnants from the avocado landscape in Mexico
- Bone growth and body weight patterns in juvenile raccoon dogs in Wakayama Prefecture, western Japan
- Bats (Mammalia, Chiroptera) and bat flies (Diptera, Streblidae) found in the largest sandstone cave of Brazil
- Occurrence and population status of the pond bat (Myotis dasycneme) in Northwest Russia
- Conservation
- Distribution and conservation status of the endemic Nilgiri marten (Martes gwatkinsii)
- Enlarging the knowledge on the Ecuadorean rodent Rhagomys septentrionalis (Cricetidae: Sigmodontinae) with remarks on rarity in sigmodontines
- New records of the Annamite striped rabbit in Ngoc Linh, Quang Nam and Kon Tum provinces, Vietnam
- Ethology
- New observations on chimpanzee accumulative stone throwing in Boé, Guinea Bissau
- Potential opportunistic behavior of crab-eating fox Cerdocyon thous (Carnivora, Canidae) in Itapuã State Park, RS, Brazil: possible cases of necrophagy
- Digging deep: hoary marmots (Marmota caligata) use refuge burrows excavated by grizzly bears (Ursus arctos)
- Biogeography
- New records of Myotis bakeri (Chiroptera: Vespertilionidae), and preliminary evidence of a new zoogeographic pattern
- Taxonomy/Phylogeny
- The first identification of Tula orthohantavirus in forest dormice (Rodentia: Gliridae) from Iran
- Two cases of mole shrews (Anourosorex squamipes) with albinism in southwestern China
- Corrigendum
- Corrigendum to: Annotations on the taxonomy of the opossums (Didelphimorphia: Didelphidae) of Honduras