Abstract
Due to their conservative morphology, the complexity of the taxonomic composition of the Myotis “nattereri” species complex was highly underestimated until recently. In recent studies, the form inhabiting the Caucasus region was allocated to the species Myotis tschuliensis. However, no molecular data was available from its type territory in Turkmenistan. We successfully isolated DNA from two paratypes of M. tschuliensis stored in the Zoological museum of Moscow State University and obtained partial sequences of the mitochondrial gene ND1. The analysis of the DNA showed that the specimens from the Caucasus and Turkmenistan undoubtedly belong to the same genetic lineage. However, morphometric analysis of cranial and dental features showed that the Caucasus and Turkmenistan populations differ from each other approximately to the same extent as M. tschuliensis from M. nattereri. It is possible that there is a still undescribed geographical race in the Caucasus. However, final clarification of the taxonomic status of this population requires more extensive studies, both genetic and morphological.
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 17-04-00689a
Acknowledgments
Laboratory study of the collection materials was performed in the Zoological Museum of Moscow University, using the collection facilities, with the support from its director, Dr. M.V. Kalyakin. Additional collection materials were studied in Bavarian State Collection of Zoology, München, with help from Dr. A. van Heteren; in National Museum of Natural History, Madrid, with help from Angel L. Garvía Rodríguez; in Royal Ontario Museum, Canada, with kind permission from Dr. J. L. Eger and Dr. B. Lim; in the Museum of Natural History, Great Britain, with support from Mr. R. Portela Miguez; in Hungarian Natural History Museum, Hungary, with support from Dr. G. Csorba; in Penza State University with permission from Dr. D.G. Smirnov; and in the Zoological Institute of RAS, Russia, with permission and help from Dr. L.L. Voita and Dr. F.N. Golenishchev.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The study was supported by the Russian Foundation for Basic Research (grant no. 17-04-00689a). The study was performed in line with State-defined scope of scientific work of the ZMMU (АААА-А16-116021660077-3).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Baker, R.J. and Bradley, R.D. (2006). Speciation in mammals and the genetic species concept. J. Mammal. 87: 643–662. https://doi.org/10.1644/06-mamm-f-038r2.1.Suche in Google Scholar
Benda, P., Andreas, M., Kock, D., Lučan, R.K., Munclinger, P., Nová, P., Obuch, J., Ochman, K., Reiter, A., and Uhrin, M. (2006). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria distribution, systematics, ecology. Acta Soc. Zool. Bohem. 70: 1–329.Suche in Google Scholar
Benda, P., Faizolâhi, K., Andreas, M., Obuch, J., Reiter, A., Ševčík, M., Uhrin, M., Vallo, P., and Ashrafi, S. (2012). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Soc. Zool. Bohem. 76: 163–582.Suche in Google Scholar
Bobrinskiy, N.A., Kuznetsov, B.A., and Kuzyakin, A.P. (1965). Identification guide to the Mammals of the USSR. Prosvescheniye, Moscow. [in Russian].Suche in Google Scholar
Burland, T.G. (1999). DNASTAR’s lasergene sequence analysis software. In: Misener, S. and Krawetz, S.A. (Eds), Bioinformatics methods and protocols. Methods in molecular biology™, Vol 132. Humana Press, Totowa, NJ, pp. 71–91. https://doi.org/10.1385/1-59259-192-2:71.10.1385/1-59259-192-2:71Suche in Google Scholar
Corbet, G.B. (1978). The mammals of the Palaearctic region: a taxonomic review. Cornell University Press, London and Ithaca.Suche in Google Scholar
Çoraman, E., Dietz, C., Hempel, E., Ghazaryan, A., Levin, E., Presetnik, P., Zagmajster, M., and Mayer, F. (2019). Reticulate evolutionary history of a Western Palaearctic bat complex explained by multiple mtDNA introgressions in secondary contacts. J. Biogeogr. 46: 343–354. https://doi.org/10.1111/jbi.13509.Suche in Google Scholar
Ellerman, J.R. and Morrison-Scott, T.C.S. (1951). Checklist of Palaearctic and Indian mammals 1758 to 1946. British Museum (Natural History), London.Suche in Google Scholar
García-Mudarra, J.L., Ibáñez, C., and Juste, J. (2009). The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biol. J. Linn. Soc. 96: 434–450. https://doi.org/10.1111/j.1095-8312.2008.01128.x.Suche in Google Scholar
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleotide 41: 95–98.Suche in Google Scholar
Horacek, I. and Hanák, V. (1984). Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis 21-22: 20–29.Suche in Google Scholar
Huelsenbeck, J.P. and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754.Suche in Google Scholar
Hutterer, R., Ivanova, T., Meyer-Cords, C., and Rodrigues, L. (2005). Bat migrations in Europe. A review of banding data and literature. Federal Agency for Nature Conservation, Bonn.Suche in Google Scholar
Ibáñez, C., García-Mudarra, J.L., Ruedi, M., Stadelmann, B., and Juste, J. (2006). The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8: 227–297. https://doi.org/10.3161/1733-5329(2006)8[277:tictcd]2.0.co;2.10.3161/1733-5329(2006)8[277:TICTCD]2.0.CO;2Suche in Google Scholar
Jones, G., Parsons, S., Zhang, S., Stadelmann, B., Benda, P., and Ruedi, M. (2006). Echolocation calls, wing shape, diet and phylogenetic diagnosis of the endemic Chinese bat Myotis pequinius. Acta Chiropterol. 8: 451–464. https://doi.org/10.3161/1733-5329(2006)8[451:ecwsda]2.0.co;2.10.3161/1733-5329(2006)8[451:ECWSDA]2.0.CO;2Suche in Google Scholar
Juste, J., Ruedi, M., Puechmaille, S.J., Salicini, I., and Ibáñez, C. (2018). Two new cryptic bat species within the Myotis nattereri species complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. Acta Chiropterol. 20: 285–300. https://doi.org/10.3161/15081109acc2018.20.2.001.Suche in Google Scholar
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285.Suche in Google Scholar
Koopman, K.F. (1994). Chiroptera: systematics. Handbook of zoology. Mammalia. Part 60, Vol. 8. Walter de Gruyter, Berlin & New York.Suche in Google Scholar
Kuzyakin, A.P. (1935). New data on the taxonomy and geographical distribution of bats (Chiroptera) in the USSR. MOIP Bull. (Biol. Sect.) XLIV: 428–438. [in Russian].Suche in Google Scholar
Kuzyakin, A.P. (1950). Bats (Systematics, life history and utility in agriculture and forestry). Sovetskaya Nauka, Moscow, p. 444. [in Russian].Suche in Google Scholar
Lanfear, R., Calcott, B., Ho, S.Y.W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695–1701. https://doi.org/10.1093/molbev/mss020.Suche in Google Scholar
Minh, B.Q., Nguyen, M.A.T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30: 1188–1195. https://doi.org/10.1093/molbev/mst024.Suche in Google Scholar PubMed PubMed Central
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32: 268–274. https://doi.org/10.1093/molbev/msu300.Suche in Google Scholar PubMed PubMed Central
Ognev, S.I (1928). The mammals of the Eastern Europe and of the Northern Asia, Vol. 1. Glavnauka, Moscow & Leningrad. [in Russian].Suche in Google Scholar
Patten, M.A (2010). Null expectations in subspecies diagnosis. Ornithol. Monogr. 67: 35–41. https://doi.org/10.1525/om.2010.67.1.35.Suche in Google Scholar
Patten, M.A., and Remsen, J.VJr. (2017). Complementary roles of phenotype and genotype in subspecies delimitation. J. Hered. 108: 462–464. https://doi.org/10.1093/jhered/esx013.Suche in Google Scholar PubMed
Rakhmatulina, I.K. (2005). Bats of Azerbaijan (fauna, ecology and zoogeography). Institute of Zoology of NAS Azerbaijan, Baku. [in Russian].Suche in Google Scholar
Rambaut, A. and Drummond, A.J. (2007). Tracer v1.5, Available at: http://beast.bio.ed.ac.uk/Tracer.Suche in Google Scholar
Ronquist, F. and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180.Suche in Google Scholar PubMed
Ruedi, M., Stadelmann, B., Gager, Y., Douzery, E. J. P., Francis, C. M., Lin, L.-K., Guillen-Servent, A., and Cibois, A. (2013). Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Mol. Phylogenet. Evol. 69: 437–449. https://doi.org/10.1016/j.ympev.2013.08.011.Suche in Google Scholar PubMed
Ruedi, M., Puechmaille, S.J., Ibáñez, C., and Juste, J. (2019). Unavailable names in the Myotis nattereri species complex. J. Biogeogr. 46: 2145–2146. https://doi.org/10.1111/jbi.13665.Suche in Google Scholar
Salicini, I., Ibáñez, C., and Juste, J. (2011). Multilocus phylogeny and species delimitation within the Natterer’s bat species complex in the Western Palearctic. Mol. Phylogenet. Evol. 61: 888–898. https://doi.org/10.1016/j.ympev.2011.08.010.Suche in Google Scholar PubMed
Smithe, F.B (1975). Naturalist’s color guide. American Museum of Natural History, New York.Suche in Google Scholar
Strelkov, P.P. (1963). Order Chiroptera–bats. In: Gromov, I.M., Gureyev, A.A., Novikov, G.A., Sokolov, I.I., Strelkov, P.P., and Chapskiy, K.K. (Eds.). Mammals of the fauna of USSR. Part 1. Academy of Sciences of the Soviet Union USSR, Moscow & Leningrad, pp. 122–218. [in Russian].Suche in Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197.Suche in Google Scholar PubMed PubMed Central
Whitaker, J.O. and Hamilton, W.J. (1998). Mammals of the Eastern United States, 3rd ed. New York: Cornell University Press.Suche in Google Scholar
Supplementary material
The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2019-0146).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Evolutionary biology
- Covid-19: natural or anthropic origin?
- Ecology
- Relative abundance and activity patterns of terrestrial carnivorous mammals in Península Valdés, Patagonia, Argentina
- Understanding population baselines: status of mountain ungulate populations in the Central Tien Shan Mountains, Kyrgyzstan
- Do prairie voles (Microtus ochrogaster) change their activity and space use in response to domestic cat (Felis catus) excreta?
- An expandable radio collar for monitoring young terrestrial mammals
- Conservation
- Stranding cases of endangered Ganges river dolphins in the Ghaghara–Sharada irrigation canals, Ganges river basin, India: conservation implications
- Relative rarity of small wild cats in the Brazilian Pantanal
- Biogeography
- New records of bats (Chiroptera) in the Atlantic Forest of Espírito Santo, southeastern Brazil
- Leucism and updated geographic distribution of Molossus nigricans Miller, 1902 (Chiroptera: Molossidae) in Honduras
- Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia
- First record of a Nathusius’ pipistrelle (Pipistrellus nathusii) overwintering at a latitude above 60°N
- Taxonomy/phylogeny
- Molecular relationships of the Israeli shrews (Eulipotyphla: Soricidae) based on cytochrome b sequences
- Validating the relationships: which species of Myotis “nattereri” group (Chiroptera: Vespertilionidae) actually inhabits the Caucasus
- Annual reviewer acknowledgement
- Reviewer acknowledgement Mammalia volume 84 (2020)
Artikel in diesem Heft
- Frontmatter
- Evolutionary biology
- Covid-19: natural or anthropic origin?
- Ecology
- Relative abundance and activity patterns of terrestrial carnivorous mammals in Península Valdés, Patagonia, Argentina
- Understanding population baselines: status of mountain ungulate populations in the Central Tien Shan Mountains, Kyrgyzstan
- Do prairie voles (Microtus ochrogaster) change their activity and space use in response to domestic cat (Felis catus) excreta?
- An expandable radio collar for monitoring young terrestrial mammals
- Conservation
- Stranding cases of endangered Ganges river dolphins in the Ghaghara–Sharada irrigation canals, Ganges river basin, India: conservation implications
- Relative rarity of small wild cats in the Brazilian Pantanal
- Biogeography
- New records of bats (Chiroptera) in the Atlantic Forest of Espírito Santo, southeastern Brazil
- Leucism and updated geographic distribution of Molossus nigricans Miller, 1902 (Chiroptera: Molossidae) in Honduras
- Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia
- First record of a Nathusius’ pipistrelle (Pipistrellus nathusii) overwintering at a latitude above 60°N
- Taxonomy/phylogeny
- Molecular relationships of the Israeli shrews (Eulipotyphla: Soricidae) based on cytochrome b sequences
- Validating the relationships: which species of Myotis “nattereri” group (Chiroptera: Vespertilionidae) actually inhabits the Caucasus
- Annual reviewer acknowledgement
- Reviewer acknowledgement Mammalia volume 84 (2020)