Home Pregastric and caecal fermentation pattern in Syrian hamsters
Article
Licensed
Unlicensed Requires Authentication

Pregastric and caecal fermentation pattern in Syrian hamsters

  • Milan Marounek EMAIL logo , Jakub Mrázek , Zdeněk Volek , Eva Skřivanová and Jiří Killer
Published/Copyright: December 17, 2014

Abstract

Few studies have compared the pregastric and caecal digestion of hamsters. Mature Syrian hamsters (Mesocricetus auratus) were fed a diet containing crude protein and fibre at 225 and 64 g/kg, respectively. In the pregastric digesta, the pH, volatile fatty acids (VFA), lactate and ammonia N concentrations were 5.91±0.97, 43.1±12.9 μmol/g, 19.2±8.0 μmol/g and 2.46±1.16 mg/g, respectively. The corresponding values in the caecal contents were 6.41±0.25, 92.1±12.2 μmol/g, 6.9±1.0 μmol/g and 0.28±0.08 mg/g, respectively. Acetate was the primary VFA, followed by propionate in the forestomach and butyrate in the caecum. In the caecal contents, a very small amount of methane was produced. The number of total bacteria determined by real-time PCR averaged 2.31×109/g and 1.57×1010/g in the pregastric and caecal digesta, respectively. In the pregastric digesta, bifidobacteria and Bacteroides sp. were present at 1.57×107/g and 4.02×107/g, respectively. In the caecal contents, the numbers of bifidobacteria and Bacteroides sp. were 1.01×108/g and 1.46×108/g, respectively. The caecum appears to be more important in hamsters than the forestomach, both in terms of its greater size (3.39±0.63 g vs. 1.59±0.70 g) and greater microbial activity.


Corresponding author: Milan Marounek, Institute of Animal Science, Department of Nutrition Physiology and Products Quality, Přátelství 815, Prague 22, 104 00 Czech Republic, e-mail:

Acknowledgments

This study was supported by the Ministry of Agriculture of the Czech Republic (project MZERO0714) and by the Czech University of Life Sciences (project CIGA 2012014). The authors thank Dr. J. Plachý from the Institute of Molecular Genetics in Prague for the gift of hamsters.

References

Burroughs, W.N., A. Frank, P. Gerlaugh and R.M. Bethke. 1950. Preliminary observations upon factors influencing cellulose digestion by rumen microorganisms. J. Nutr. 40: 9–14.10.1093/jn/40.1.9Search in Google Scholar PubMed

Conway, E.J. 1957. Microdiffusion analysis and volumetric error. 4th ed. Crosby Lockwood & Son, London.Search in Google Scholar

Ehle, F.R. and R.G. Warner. 1978. Nutritional implications of the hamster forestomach. J. Nutr. 108: 1047–1053.10.1093/jn/108.7.1047Search in Google Scholar PubMed

Fischer, S.G. and L.S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. – Biol. Sci. USA 80: 1579–1583.10.1073/pnas.80.6.1579Search in Google Scholar PubMed PubMed Central

García, J., T.G. Gidenne, L. Falcao-e-Cunha and C. de Blas. 2002. Identification of the main factors that influence caecal fermentation traits in growing rabbits. Anim. Res. 51: 165–173.10.1051/animres:2002011Search in Google Scholar

Ghoshal, N.G. and H.S. Bal. 1989. Comparative morphology of the stomach of some laboratory mammals. Lab. Anim.-UK 23: 21–29.10.1258/002367789780886911Search in Google Scholar PubMed

Grajal, A., S.D. Strahl, R. Parra, M.G. Dominguez and A. Neher. 1989. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245: 1236–1238.10.1126/science.245.4923.1236Search in Google Scholar

Hackstein, J.H.P. and T.A. van Alen. 1996. Fecal methanogens and vertebrate evolution. Evolution 50: 559–572.10.1111/j.1558-5646.1996.tb03868.xSearch in Google Scholar PubMed

Hoover, W.H., C.L. Mannings and H.E. Sheerin. 1969. Observations on digestion in the golden hamster. J. Anim. Sci. 28: 349–352.10.2527/jas1969.283349xSearch in Google Scholar PubMed

Imai, S., H.T. Lap and K. Ogimoto. 1976. Flagellate protozoa in the fore-stomach of hamster and of field mouse (in Japanese). Jap. J. Parasitol. 25 (Suppl.): 83.Search in Google Scholar

Kaufmann, P., A. Pfefferkorn, M. Teuber and L. Meile. 1997. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl. Environ. Microbiol. 63: 1268–1273.10.1128/aem.63.4.1268-1273.1997Search in Google Scholar PubMed PubMed Central

Kunstýř, I. 1974. Some quantitative and qualitative aspects of the stomach microflora of the conventional rat and hamster. Zbl. Vet. Med. A. 21: 553–561.10.1111/j.1439-0442.1974.tb01150.xSearch in Google Scholar

Laakkonen, J., T. Kankaanpää, I.J. Corfe, J. Jernvall, T. Soveri, K. Keovichit and J.- P. Hugot. 2014. Gastrointestinal and dental morphology of herbivorous mammals: where does the Laotian rock rat fit? Ann. Zool. Fennici 51: 153–161.10.5735/086.051.0216Search in Google Scholar

Langer, P. 1984. Comparative anatomy of the stomach in mammalian herbivores. Q. J. Exp. Physiol. 69: 615–625.10.1113/expphysiol.1984.sp002848Search in Google Scholar

Maidak, B.L., N. Larsen, M.J. McCaughey, R. Overbeek, G.J. Olsen, K. Fogel, J. Blandy and C.R. Woese. 1994. The ribosomal database project. Nucleic Acid Res. 22: 3485–3487.10.1093/nar/22.17.3485Search in Google Scholar

Marinangeli, C.P.F., D. Krause, S.V. Harding, T.C. Rideout, F. Zhu and P.J.H. Jones. 2011. Whole and fractionated yellow pea flours modulate insulin, glucose, oxygen consumption, and the caecal microbiome in Golden Syrian hamsters. Appl. Physiol. Nutr. Metab. 36: 811–820.10.1139/h11-101Search in Google Scholar

Marounek, M., D. Dušková and V. Skřivanová. 1998. Effect of non-ionophore feed antibiotics on in vitro fermentation in the ovine rumen and rabbit caecum. J. Agr. Sci. 130: 115–118.10.1017/S0021859697005042Search in Google Scholar

Marounek, M., M. Skřivan, P. Březina and I. Hoza. 2005. Digestive organs, caecal metabolites and fermentation pattern in coypus (Myocastor coypus) and rabbits (Oryctolagus cuniculus). Acta Vet. Brno, 74: 3–7.10.2754/avb200574010003Search in Google Scholar

Matsuki, T., K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu and R. Tanaka. 2002. Development of 16S rRNA-gene-targeted group specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68: 5445–5451.10.1128/AEM.68.11.5445-5451.2002Search in Google Scholar

Matsumoto, T. 1955. Nutritive value of urea as a substitute for feed protein. I. Utilization of urea by golden hamster. Tohoku J. Agr. Res. 6: 127–131.Search in Google Scholar

Mrázek, J., K. Tepšič, G. Avguštin and J. Kopečný, 2006. Diet-dependent shifts in ruminal butyrate-producing bacteria. Folia Microbiol. 51: 294–298.10.1007/BF02931817Search in Google Scholar

Muyzer, G., E.C. De Waal and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl. Environ. Microbiol. 59: 695–700.10.1128/aem.59.3.695-700.1993Search in Google Scholar

Rabehl, H., P. Wolf and J. Kamphues. 1998. Basic data for feeding hamsters. J. Anim. Physiol. Anim. Nutr. 80: 220–225.10.1111/j.1439-0396.1998.tb00531.xSearch in Google Scholar

Robinson, P.H. and J.S. Stephenson. 1990. Dietary restriction delays gastric emptying in rats. Appetite 14: 193–201.10.1016/0195-6663(90)90087-OSearch in Google Scholar

Sakaguchi, E. and T. Matsumoto. 1985. Effect of monensin on feed utilization and gastrointestinal fermentation in the hamster (Mesocricetus auratus), Brit. J. Nutr. 54: 147–155.10.1079/BJN19850100Search in Google Scholar

Sakaguchi, E., J. Itoh, H. Shinohara and T. Matsumoto. 1981. Effects of removal of the forestomach and caecum on the utilization of dietary urea in golden hamsters (Mesocricetus auratus) given two different diets. Brit. J. Nutr. 46: 503–512.10.1079/BJN19810059Search in Google Scholar PubMed

Sakaguchi, E., H. Itoh, S. Uchida and T. Horigome. 1987. Comparison of fibre digestion and digesta retention time between rabbits, guinea pigs, rats and hamsters. Brit. J. Nutr. 58: 149–158.10.1079/BJN19870078Search in Google Scholar PubMed

Scopin, A.E., A. P. Saveljev, N.A. Suntsova, S. Gnophanxay, A.N. Tikhonov and A.V. Abramov. 2011. Digestive system of the Laothian rock rat Laonastes aenigmamus (Rodentia: Diatomyidae) from the evolutionary viewpoint. Proc. Zool. Inst. RAS 315: 3–18.10.31610/trudyzin/2011.315.1.3Search in Google Scholar

Shichijo, H., T. Takahashi, Y. Kondo, S.H. Sakamoto and T. Morita. 2013. Nutritional significance of coprophagy in the rat-like hamster Tscherskia triton. Mammalia 77: 329–333.10.1515/mammalia-2012-0084Search in Google Scholar

Šimůnek, J., H. Bartoňová and M. Marounek. 2000. Pregastric and postgastric digestion in hamster (Mesocricetus auratus). Czech J. Anim. Sci. 45, (Proc. XVIIIth Inter. Symp. Anim. Physiol.) XII.Search in Google Scholar

Soave, O. and C.D. Brand. 1991. Coprophagy in animals – a review. Cornell Vet. 81: 357–364.Search in Google Scholar

Tadayyon, B. and L. Lutwag. 1969. Role of coprophagy in utilization of triglycerides, calcium, magnesium, and phosphorus in rat. J. Nutr. 97: 243–245.10.1093/jn/97.2.243Search in Google Scholar

Temmerman, R., L. Masco, T. Vanhoutte, G. Huys and J. Swings. 2003. Development and validation of a nested-PCR-denaturing gradient gel electrophoresis method for taxonomic characterization of bifidobacterial communities. Appl. Environ. Microbiol. 69: 6380–6385.10.1128/AEM.69.11.6380-6385.2003Search in Google Scholar PubMed PubMed Central

Torrallardona, D., C.I. Harris and M.F. Fuller. 1996. Microbial amino acid synthesis and utilization in rats: the role of coprophagy. Brit. J. Nutr. 76: 701–709.10.1079/BJN19960077Search in Google Scholar

Tseng, R.Y. 1976. Metabolic changes in golden hamsters fed vitamin B12 deficient diets. J. Nutr. 106: 77–85.10.1093/jn/106.1.77Search in Google Scholar PubMed

Van Soest, P.J. 1994. Nutritional ecology of the ruminant. 2nd ed. Cornell University Press, Ithaca, NY.10.7591/9781501732355Search in Google Scholar

Received: 2014-8-5
Accepted: 2014-10-22
Published Online: 2014-12-17
Published in Print: 2016-1-1

©2016 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Original Studies
  3. Summer temperature and precipitation govern bat diversity at northern latitudes in Norway
  4. Structure of three subtropical bat assemblages (Chiroptera) in the Andean rainforests of Argentina
  5. Morphology, genetics and echolocation calls of the genus Kerivoula (Chiroptera: Vespertilionidae: Kerivoulinae) in Thailand
  6. Status and population structure of a hunted population of Marco Polo Argali Ovis ammon polii (Cetartiodactyla, Bovidae) in Southeastern Tajikistan
  7. Habitat use of Himalayan grey goral in relation to livestock grazing in Machiara National Park, Pakistan
  8. Characterization and selection of microhabitat of Microcavia australis (Rodentia: Caviidae): first data in a rocky habitat in the hyperarid Monte Desert of Argentina
  9. Pregastric and caecal fermentation pattern in Syrian hamsters
  10. Short Notes
  11. Barn owl pellets collected in coastal savannas yield two additional species of small mammals for French Guiana
  12. Wiedomys cerradensis (Gonçalves, Almeida, Bonvicino, 2003) (Rodentia, Cricetidae): first record from the state of Maranhão, Brazil
  13. Morpho-anatomical characteristics of Indian pangolin (Manis crassicaudata) from Potohar Plateau, Pakistan
  14. First confirmed records of two bat species for Iraq: Rhinolophus euryale and Myotis emarginatus (Chiroptera)
  15. An efficient timing device to record activity patterns of small mammals in the field
  16. First record of Leontopithecus chrysopygus (Primates: Callitrichidae) in Carlos Botelho State Park, São Miguel Arcanjo, São Paulo, Brazil
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2014-0109/html
Scroll to top button