Home An approach for an extension of the deflagration model in containment code system COCOSYS to separate burned and unburned atmosphere via junctions
Article
Licensed
Unlicensed Requires Authentication

An approach for an extension of the deflagration model in containment code system COCOSYS to separate burned and unburned atmosphere via junctions

  • Johannes Hoffrichter ORCID logo EMAIL logo and Marco K. Koch ORCID logo
Published/Copyright: June 19, 2023
Become an author with De Gruyter Brill

Abstract

In case of a postulated severe accident in a water-cooled nuclear power plant significant amounts of hydrogen (H2) and carbon monoxide (CO) can be generated and released into the containment or reactor building where it might form a combustible mixture with air assuming passive autocatalytic recombiners are not available. In case of ignition, pressure peaks might occur, that are relevant for the integrity of safety relevant equipment and the containment or reactor building. It is therefore important for safety analysis to be able to correctly predict combustion phenomena that might occur. The accident analysis code AC2 2021.0 which is developed by Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) includes the Containment Code System (COCOSYS version 3.1) for the simulation of containment phenomena. COCOSYS contains the model FRONT for the simulation of premixed deflagration of H2 and CO. Recent code validation using H2 deflagration tests conducted in the multi-compartment THAI+ test facility shows that the flame propagation stops prematurely in simulations of some tests. This is partly attributed to the missing separation of burned and unburned atmosphere which leads to a reduction in fuel concentration in not yet burning zones connected to a burning zone. Model improvement potential was identified which is addressed in this paper. A model extension to separate burned and unburned atmosphere via a junction model is proposed and implemented into a development version of COCOSYS 3.1. First validation results using the THAI test HD-39 are discussed that show improved prediction capability by the extended model.


Corresponding author: Johannes Hoffrichter, Plant Simulation and Safety Group, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum 44801, Germany, E-mail:

Acknowledgments

The results were obtained using the GRS software package AC2 2021.0.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection under grant numbers BMWi 1501568 (VAMOCAAD) and BMUV 1501629 (AVAMO). The responsibility for the content of this publication lies with the authors.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Nomenclature

Acronyms

AICC

Adiabatic Isochoric Complete Combustion

AMHYCO

Towards an Enhanced Accident Management of the Hydrogen/CO Combustion Risk (Project)

ASTEC

Accident Source Term Evaluation Code

ATLAS

Analysis simulator for interactive plant simulation

ATMOS_JUN

Atmospheric Junction Model

AVAMO

Analyse und externe Validierung der AC2 Modellbasis (Project)

BWR

Boiling Water Reactor

COCOSYS

Containment Code System

DDT

Deflagration to Detonation Transition

EXP

Experiment

FRONT

Flame Front Propagation Model

GRS

Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH

HD

Hydrogen Deflagration

INST

Incompressible Transient Momentum Equation

LOCA

Loss of Coolant Accident

LP

Lumped Parameter

MCCI

Molten Corium Concrete Interaction

NEA

Nuclear Energy Agency

NPP

Nuclear Power Plant

OECD

Organisation for Economic Co-operation and Development

PAD

Parallel Attachable Drum

PSS

Plant Simulation and Safety group

PWR

Pressurized Water Reactor

RALOC

Radiolyse und Lokalkonzentrationsverteilung im Containment

RUB

Ruhr-Universität Bochum

THAI

Thermal-Hydraulics, Hydrogen, Aerosol, and Iodine

THAI+

Thermal-Hydraulics, Hydrogen, Aerosol, and Iodine ± multiple-compartment

TTV

THAI Test Vessel

Latin

A

area [m3]

c p

isobaric heat capacity [J/(kg K)]

c s

speed of sound [m/s]

C

correlation constant [–]

D

diffusion coefficient [m2/s]

d

diameter [m]

g

gravitational acceleration [m/s2]

h

height [m]

H

enthalpy [kJ/kg]

K

flow resistance term [1/(kgm)]

l

length [m]

L T

turbulent integral scale [m]

M

molar mass [kg/mol]

M

average molar mass [kg/mol]

m

mass [kg]

m ˙

mass flow [kg/s]

E

correlation constant [–]

p

pressure [kg/(ms2)]

Q ˙

heat flow [kJ/s]

R

universal gas constant [J/(mol K)]

R F

reduction factor for elementary entities [–]

r

reaction rate [kg/s]

S

flame velocity [m/s]

T

temperature [K]

t

time [s]

U

flow velocity [m/s]

u

turbulence intensity [m/s]

V

volume [m3]

V ˙

volume flow [m3/s]

w

weight term [kg/(ms2)]

X

molar fraction [mol/mol]

Y

mass fraction [kg/kg]

Greek

α

coefficient in the Liu–Macfarlane correlation [–]

β

coefficient in the Liu–Macfarlane correlation [–]

δ

flame thickness [m]

difference operator [–]

ε

small value (10−6) [–]

ζ

flow resistant value [–]

η

kinematic viscosity [m2/s]

κ

heat capacity ratio [–]

λ

friction coefficient for laminar flow [–]

ρ

density [kg/m³]

σ

flame surface ratio [m2/m2]

Subscripts

0

unburned atmosphere

1

burned atmosphere

c

constant

F

flame

H 2

hydrogen

H H V

higher heating value

( H 2 O ) v

steam (vapor)

i

component specific

J

junction

L

Laminar

max .

maximum

p

isobaric

r e f .

reference

T

turbulent

T Z

target zone

S Z

source zone

Z

zone

Superscripts

0

unstretched

Non-dimensional parameters

R e

Reynolds number

References

Al-Khishali, K., Bradley, D., and Hall, S. (1983). Turbulent combustion of near-limit hydrogen-air mixtures. Combust. Flame 54: 61–70, https://doi.org/10.1016/0010-2180(83)90022-6.Search in Google Scholar

Arndt, S., Band, S., Beck, S., Eschricht, D., Iliev, D., Klein-Heßling, W., Nowack, H., Reinke, N., Sonnenkalb, M., and Spengler, C. et al.. (2021). COCOSYS 3.1 user manual. GRS-P-3/Vol. 1, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln.Search in Google Scholar

Bratfisch, C., Hoffmann, M., Hoffrichter, J., Jankowski, T., Krist, F., Peschel, J., Stahlberg, G., and Koch, M.K. (2021). Externe Validierung und Modellanalyse der Codesysteme AC2 und ASTEC mit unterstützenden CFD-Detailanalysen (VAMOCAAD). Abschlussbericht zum Forschungsvorhaben BMWi 1501568. PSS-TR-19, Ruhr-Universität Bochum, AG Plant Simulation and Safety.Search in Google Scholar

Brähler, T. (2014). Weiterentwicklung der Wasserstoffverbrennungsmodellierung des Lumped-Parameter-Codes COCOSYS, Dissertation/thesis. Ruhr-Universität Bochum, Bochum.Search in Google Scholar

Breitung, W., Chan, C., Dorofeev, S., Eder, A., Gelfand, B., Heitsch, M., Klein, R., Malliakos, A., Shepherd, E., Studer, E., et al.. (2000). Flame acceleration and deflagration-to-detonation transition in nuclear safety. State-of-the-Art Report. NEA/CSNI/R(2000)7, Nuclear Energy Agency.Search in Google Scholar

Coward, H.F. and Jones, J.W. (1952). Limits of flammability of gases and vapors. Bulletin 503, Bureau of Mines, United States Department of the Interior.Search in Google Scholar

Dorofeev, S. (1996). Deflagration to detonation transition in large confined volume of lean hydrogen-air mixtures. Combust. Flame 104: 95–110, https://doi.org/10.1016/0010-2180(95)00113-1.Search in Google Scholar

Eckel, J. and Erdmann, W. (2012). The ASTEC flame FRONT module. Model description and parameter studies. ECK-TN-01/11 RS1190 RS1185 Rev 1, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH.Search in Google Scholar

Freitag, M., Kühnel, A., and Langer, G. (2016). Extension of the THAI test facility by a second vessel: THAI+. 1501455 – FB/TR – THAIPLUS, Becker Technologies GmbH.Search in Google Scholar

Freitag, M., Laufenberg, B. von, and Schmidt, E. (2017). Hydrogen deflagration tests in a two-vessel test facility, test series HD-36 – HD-39. 1501455 – TR – HD36-39. Becker Technologies GmbH, Germany.Search in Google Scholar

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH (1989). Deutsche Risikostudie Kernkraftwerke Phase B. Eine Untersuchung im Auftrag des Bundesministers für Forschung und Technologie. TÜV Rheinland, Köln.Search in Google Scholar

Gupta, S., Freitag, M., Schmidt, E., Colombet, M., von Laufenberg, B., Kühnel, A., Langer, G., Funke, F., and Langrock, G. (2017). Ein- und Mehrraumversuche zum Spaltprodukt- und Wasserstoff-Verhalten im Sicherheitsbehälter – THAI-V. Abschlussbericht Reaktorsicherheitsforschung – Vorhaben-Nr.: 1501455. Becker Technologies GmbH; AREVA GmbH, Eschborn, Erlangen.Search in Google Scholar

Gupta, S., Freitag, M., and Poss, G. (2021). THAI experimental research on hydrogen risk and source term related safety systems. Front. Energy 15: 887–915, https://doi.org/10.1007/s11708-021-0789-1.Search in Google Scholar

Henrie, J.O. and Postma, A.K. (1987). Lessons learned from hydrogen generation and burning during the TMI-2 event. GEND-061, general public utilities, electric power research institute, U.S. Nuclear Regulatory commission, U.S. Department of Energy.10.2172/6237032Search in Google Scholar

Hoffrichter, J. and Koch, M.K. (2021a). Simulation von Wasserstoffdeflagration in einer Mehrraumgeometrie mit AC2 – COCOSYS. Technischer Fachbericht zum Vorhaben BMWi 1501568. PSS-TR-16, Ruhr-Universität Bochum, AG Plant Simulation and Safety.Search in Google Scholar

Hoffrichter, J. and Koch, M.K. (2021b). Simulation of hydrogen deflagrations with the lumped parameter code COCOSYS. Int. J. Adv. Nucl. React. Des. Technol. 3: 18–26, https://doi.org/10.1016/j.jandt.2021.03.002.Search in Google Scholar

Jahn, H.L. (1980). Zur Wasserstoffverteilung nach einem Kühlmittelverlust-Störfall in unterteilten Sicherheitsbehältern von Leichtwasser-Reaktoren, Dissertation/thesis. Technische Universität München.Search in Google Scholar

Klein-Heßling, W., Arndt, S., Weber, G., and Spengler, C. (2021). COCOSYS Reference Manual. THY Main Models. GRS – P – 3/2, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln.Search in Google Scholar

Kotchourko, A., Bentaib, A., Fischer, K., Chaumeix, N., Yanez, J., Benz, S., Kudriakov, S. (2012). ISP-49 on Hydrogen Combustion, Final Report, NEA/CSNI/R(2011)9, Nuclear Energy Agency.Search in Google Scholar

Kumar, R.K., Tamm, H., and Harrison, W.C. (1983). Combustion of hydrogen-steam-air mixtures near lower flammability limits. Combust. Sci. Technol. 33: 167–178, https://doi.org/10.1080/00102208308923673.Search in Google Scholar

Kumar, R.K. (1985). Flammability limits of hydrogen-oxygen-diluent mixtures. J. Fire Sci. 3: 245–262, https://doi.org/10.1177/073490418500300402.Search in Google Scholar

Liu, D.D.S. and MacFarlane, R. (1983). Laminar burning velocities of hydrogen-air and hydrogen-air-steam flames. Combust. Flame 49: 59–71, https://doi.org/10.1016/0010-2180(83)90151-7.Search in Google Scholar

Müer, M., Hoffrichter, J., Bratfisch, C., and Koch, M.K. (2022). Analyses of the combustible gas release into the containment during a SBO and a SBLOCA scenario in a generic PWR using the code package AC2. In: Proceedings of the 13th international topical meeting on nuclear reactor thermal-hydraulics, operation and safety (NUTHOS 13), Hsinchu, Taiwan, September 5–10, 2022.Search in Google Scholar

Pelzer, M. (2012). Validation of ASTEC CPA: FRONT Module Parameter Study on Hydrogen Deflagration Experiments. ASTEC/DOC/12-04 Rev 0, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Institut de radioprotection et de surete nucleaire (IRSN).Search in Google Scholar

Peters, N. (1999). The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384: 107–132, https://doi.org/10.1017/S0022112098004212.Search in Google Scholar

Punetha, M., Yadav, M.K., Khandekar, S., Sharma, P.K., and Ganju, S. (2020). Intrinsic transport and combustion issues of steam-air-hydrogen mixtures in nuclear containments. Int. J. Hydrogen Energy 45: 3340–3371, https://doi.org/10.1016/j.ijhydene.2019.11.179.Search in Google Scholar

Schramm, B.A., Stewering, J., and Sonnenkalb, M. (2017). Einsatz von CFD-Codes für die Simulation von unfalltypischen Phänomenen im Sicherheitseinschluss. Validierung und gezielte Modellerweiterung. GRS-472, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln; Garching b. München, Berlin, Braunschweig.Search in Google Scholar

Stephan, P., Schaber, K., Stephan, K., and Mayinger, F. (2013). Thermodynamik. Springer Vieweg, Berlin, Heidelberg.10.1007/978-3-642-30098-1Search in Google Scholar

Tieszen, S.R. (1993). Effect of initial conditions on combustion generated loads. Nucl. Eng. Des. 140: 81–94, https://doi.org/10.1016/0029-5493(93)90192-C.Search in Google Scholar

Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2013). VDI-Wärmeatlas. 11., bearb. und erw. Aufl. Springer Vieweg, Berlin, Heidelberg.Search in Google Scholar

Yanez, J., Kuznetsov, M., and Souto-Iglesias, A. (2015). An analysis of the hydrogen explosion in the Fukushima-Daiichi accident. Int. J. Hydrogen Energy 40: 8261–8280, https://doi.org/10.1016/j.ijhydene.2015.03.154.Search in Google Scholar

Received: 2023-03-29
Published Online: 2023-06-19
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2023-0021/html
Scroll to top button