Home Dynamics effects of tritium reduction on the energy gain of D-T fuel pellet using double cone ignition
Article
Licensed
Unlicensed Requires Authentication

Dynamics effects of tritium reduction on the energy gain of D-T fuel pellet using double cone ignition

  • Roohalah Mirzaeian , Seyedeh Nasrin Hosseinimotlagh EMAIL logo and Mahboobeh Shaghaghian
Published/Copyright: January 5, 2023
Become an author with De Gruyter Brill

Abstract

In this paper a study of the behavior of Deuterium-Tritium (D-T) plasma nuclear fusion reaction in terms of variations of time and temperature and in the presence of deuterium-tritium sources using double cone ignition is presented. The aim is the determination of the optimum physical conditions with low tritium consumption rate for obtaining the total energy gain with a value of greater than 200.


Corresponding author: Seyedeh Nasrin Hosseinimotlagh, Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran, E-mail:

Acknowledgement

The support provided by Islamic Azad University of Shiraz is grateful acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Artsimovitsh, L.A. (1972). Tokamak device. Nucl. Fusion 12: 215, https://doi.org/10.1088/0029-5515/12/2/012.Search in Google Scholar

Bailly-Grandvaux, M., Santos, J.J., Bellei, C., Forestier-Colleoni, P., Fujioka, S., Giuffrida, L., Honrubia, J.J., Batani, D., Bouillaud, R., Chevrot, M., et al.. (2018). Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nat. Commun. 9: 1–8, https://doi.org/10.1038/s41467-017-02641-7.Search in Google Scholar PubMed PubMed Central

Conn, R.W. (1981). Magnetic fusion reactor. In: Teller, E. (Ed.), Fusion, Vol. 1. Magnetic confinement Part B. Academic Press, New York, pp. 7–8.10.1016/B978-0-12-685241-7.50011-6Search in Google Scholar

Cui, Y.Q., Wang, W.M., Sheng, Z.M., Li, Y.T., and Zhang, J. (2013). Laser absorption and hot electron temperature scalings in laser–plasma interactions. Plasma Phys. Contr. Fusion 55: 085008, https://doi.org/10.1088/0741-3335/55/8/085008.Search in Google Scholar

Dolan, T.J. (1982). Fusion research: principles, experiments and technology. Pergamon Press, New York.Search in Google Scholar

Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T., et al.. (2013). Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3: 1–7, https://doi.org/10.1038/srep01170.Search in Google Scholar PubMed PubMed Central

Gross, J. (1984). Fusion energy. Wiley & Sons, New York.Search in Google Scholar

Henestroza, E. and Grant Logan, B. (2012). Progress towards a high-gain and robust target design for heavy ion fusion. Phys. Plasmas 19: 072706, https://doi.org/10.1063/1.4737587.Search in Google Scholar

Jarrott, L.C., Wei, M.S., Mcguffey, C., Solodov, A.A., Theobald, W., Qiao, B., Stoeckl, C., Betti, R., Chen, H., Delettrez, J., et al.. (2016). Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets. Nat. Phys. 12: 499–504, https://doi.org/10.1038/nphys3614.Search in Google Scholar

Keishiro, N. (1989). Nuclear fusion, English ed. Tokyo Institute of Technology, Cambridge University Press, pp. 235–236.Search in Google Scholar

Kidder, R.E. (1974). The theory of homogeneous isentropic compression and its application to laser fusion. In: Laser interaction and related plasma phenomena. Springer, Boston, MA, pp. 449–464.10.1007/978-1-4684-8416-8_3Search in Google Scholar

Lawson, J.D. (1986). Some criteria for a power production thermonuclear reactor. Proc. Phys. Soc. B 70: 6, https://doi.org/10.1088/0370-1301/70/1/303.Search in Google Scholar

McNallyJr.J.R., Rothe, K.E., and Sharp, R.D. (1979). Fusion reactivity graphs and tables for charged particle reactions. ORNL/TM-6914. Oak Ridge Nat. Lab., TN (USA).10.2172/5992170Search in Google Scholar

Miyamoto, K. (1989). Plasma physics for nuclear fusion. MIT Press, Cambridge.Search in Google Scholar

Nora, R., Theobald, W., Betti, R., Marshall, F.J., Michel, D.T., Seka, W., Yaakobi, B., Lafon, M., Stoeckl, C., Delettrez, J., et al.. (2015). Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett. 114: 045001, https://doi.org/10.1103/PhysRevLett.114.045001.Search in Google Scholar PubMed

Norreys, P., Batani, D., Baton, S., Beg, F.N., Kodama, R., Nilson, P.M., Patel, P., Pérez, F., Santos, J.J., Scott, R.H.H., et al.. (2014). Fast electron energy transport in solid density and compressed plasma. Nucl. Fusion 54: 054004, https://doi.org/10.1088/0029-5515/54/5/054004.Search in Google Scholar

Sakata, S., Lee, S., Morita, H., Johzaki, T., Sawada, H., Iwasa, Y., Matsuo, K., Law, K.F.F., Yao, A., Hata, M., et al.. (2018). Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nat. Commun. 9: 1–9, https://doi.org/10.1038/s41467-018-06173-6.Search in Google Scholar PubMed PubMed Central

Teller, E. (1981). Fusion. Academic Press, London.Search in Google Scholar

Theobald, W., Solodov, A.A., Stoeckl, C., Anderson, K.S., Betti, R., Boehly, T.R., Craxton, R.S., Delettrez, J.A., Dorrer, C., Frenje, J.A., et al.. (2011). Initial cone-in-shell fast-ignition experiments on OMEGA. Phys. Plasmas 18: 056305, https://doi.org/10.1063/1.3566082.Search in Google Scholar

Wang, W.M., Gibbon, P., Sheng, Z.M., and Li, Y.T. (2015). Magnetically assisted fast ignition. Phys. Rev. Lett. 114: 015001, https://doi.org/10.1103/PhysRevLett.114.015001.Search in Google Scholar PubMed

Wu, D., Yu, W., Fritzsche, S., and He, X.T. (2019). High-order implicit particle-in-cell method for plasma simulations at solid densities. Phys. Rev. E 100: 013207, https://doi.org/10.1103/PhysRevE.100.013207.Search in Google Scholar PubMed

Zhang, J., Wang, W.M., Yang, X.H., Wu, D., Ma, Y.Y., Jiao, J.L., Zhang, Z., Wu, F.Y., Yuan, X.H., Li, Y.T., et al.. (2020). Double-cone ignition scheme for inertial confinement fusion. Philos. Trans. R. Soc. A 378: 20200015, https://doi.org/10.1098/rsta.2020.0015.Search in Google Scholar PubMed PubMed Central

Zhu, B.J., Li, Y.T., Yuan, D.W., Li, Y.F., Li, F., Liao, G.Q., Zhao, J.R., Zhong, J.Y., Xue, F.B., He, S.K., et al.. (2015). Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses. Appl. Phys. Lett. 107: 261903, https://doi.org/10.1063/1.4939119.Search in Google Scholar

Received: 2022-08-13
Published Online: 2023-01-05
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2022-0074/html
Scroll to top button