Home Fission product isotope ratios as event characterization tools– Part II: Radioxenon isotopic activity ratios
Article
Licensed
Unlicensed Requires Authentication

Fission product isotope ratios as event characterization tools– Part II: Radioxenon isotopic activity ratios

  • Y. Finkelstein
Published/Copyright: March 17, 2022
Become an author with De Gruyter Brill

Abstract

Air sampling for radioxenon has been recommended as part of the verification system for a Comprehensive Nuclear-Test-Ban Treaty. Xenon isotopic activity ratios are used as a basis for confirming nuclear detonation, and discriminating between nuclear reactor accidental release and nuclear explosion. The primary purpose of this work is to use the available data on explosions, accidental reactor releases and laboratory experiments and simulations, in order to define the most probable scenarios for nuclear reactor accidental release, and for emission from underground nuclear detonations, to calculate the relevant radioxenon isotopic activity ratios in each scenario and to assess their use as event characterizing tools.

Abstract

Die Luftprobenahme von Radioxenon wird empfohlen als Teil des Überwachungssystems zur Einhaltung des Vertrags über das umfassende Verbot von Nuklearversuchen. Die Isotopenaktivitätsverhältnisse von Xenon werden verwendet als Grundlage zur Bestätigung einer Kernexplosion und zur Unterscheidung zwischen Kernexplosionen und Unfallbedingten Freisetzungen bei Kernreaktoren. In der vorliegenden Arbeit werden die vorhandenen Daten über Kernexplosionen, Unfallbedingte Freisetzungen bei Kernreaktoren und Daten zur Emission aus unterirdischen Kernwaffenversuchen verwendet, um die relevanten Isotopenaktivitätsverhältnisse von Xenon für jedes Szenario zu berechnen und den Nutzen der Daten zur Beschreibung eines Ereignisses zu bestimmen.


New adress: P.O.Box 8108, Petach-Tikra 49180, Israel


References

1 Ziegler, C. A.; Jacobson, D.: Spying without spies: origins of America’s secret nuclear surveillance system. Praeger Publishers, USA (1995)10.5040/9798216018018Search in Google Scholar

2 Matthews, M.; Schulze, J.: The radionuclide monitoring system of the Comprehensive Test Ban Treaty: From sample to product. Kerntechnik 66 (2001) 10210.1515/kern-2001-0059Search in Google Scholar

3 Perkins, R. W.; Miley, H. S.; Hensley, W. K.: DOE radionuclide monitoring systems for CTBT verification. Pacific Northwest Laboratory, PNL-SA-26648 (1995)Search in Google Scholar

4 Department Of Energy, Arms Control and Nonproliferation Technologies (ACNT); Developing effluent analysis technologies to support nonproliferation initiatives. DOE/NN/ACNT-95C (1995)Search in Google Scholar

5 Perkins, R. W.; Casey, L. A.: Radioxenons: Their role in monitoring a Comprehensive Test Ban Treaty. Pacific Northwest National Laboratory, DOE US, DOE/RL-96-51 (1996)10.2172/266641Search in Google Scholar

6 Wild, J. W.: Radionuclide monitoring during CTBT: Caveats for the interpretation of Xenon fission-product data. Informal Radionuclide Monitoring Workshop, Helsinki, Finland, September 5, 1996. Isotope tory Usa Science Division, Lawrence Livermore National Labora­Search in Google Scholar

7 Bowyer, T. W.;Abel, K. H.; Hensley, W. K.; Hubbard, C. W.; McKinnon, A. D.; Panisko, M. E.; Perkins, R. W.; Reeder, P. L.; Thompson, R. C.; Warner, R. A.: Automatic radioxenon analyzer for CTBT monitoring. Pacific Northwest National Laboratory, PNNL-11424 (1996)10.2172/431123Search in Google Scholar

8 Zucca, States J. presentation, J.: A revised 30 OSI July residual to 4 August phenomenology 1997. CtBtchart. /PC-III/United OSI/ WS/PR.14 (1997)Search in Google Scholar

9 List of radionuclides of interest for OSI. CTBT/WGB/TL-4/19 (1999)Search in Google Scholar

10 Rodriguez, D. J.; Peterson, K. R.: Simulating the venting of radioactivity from a soviet nuclear test. Atmospheric Environment 23 (1989)95310.1016/0004-6981(89)90299-0Search in Google Scholar

11 Bjurman, B.; De Geer, L.-E.; Vintersved, I.; Rudjord, A. L.; Ugletveit, F.; Aaltonen, H.; Sinkko, K.; Rantavaara, A.; Nielsen, S. P.; Aarkrog, A.; Kolb, W. The detection of radioactive material from a venting underground nuclear explosion. J. Environment Radioactivity 11 (1990) 110.1016/0265-931X(90)90040-3Search in Google Scholar

12 Lagus, P. L.; McKinnis, W. B.; Hearst, J. R.; Burkhard, N. R.; Smith, C. F.: Field measurements of tracer gas transport by barometric pumping. Maxwell Lab. Inc., UCRL-CR-119147 (1994)10.2172/225021Search in Google Scholar

13 Clarke, R. H.: An analysis of the 1957 Windscale accident using the WEERIE code. Annals of Nuclear Science and Engineering 1 (1974) 7310.1016/0302-2927(74)90054-3Search in Google Scholar

14 Chamberlaine, A. C.: Deposition of iodine-131 in northern England in October 1957. Quart J. Roy. Met. Soc. 85 (1959) 35010.1002/qj.49708536604Search in Google Scholar

15 Owen, D. E.; Cox, T. E.; Broughton, J. M.: Fission producttransport at Three Mile Island. American Ceramic Society annual meeting. Cincinnati, OH (USA), 5–9 May 1985, EGG-M-12185, CONF-850536–13 and: Owen, D. E.; Cox, T. E.; Broughton, J. M.: Fission producttransport at Three Mile Island, in: S. Langer, W. R. Young: Proceedings of the first international meeting on the TMI-2 accident, 21 October 1985. CONF-8510166, p. 97–122Search in Google Scholar

16 Analysis of the Three Mile Island-Unit 2 accident. Prepared by the Nuclear Safety Analysis Center, Electric Power Research Institute Palo Alto, CA (USA). EPRI-NSAC-80–1, DE82–901520 (March 1980)Search in Google Scholar

17 Cotter, S. J.; Miller, C. W.; Moore, R. E.; Little, C. A.: Estimate of dose due to noble gas releases from the Three Mile Island incident using the AIRDOS-EPA computer code. ORNL-5649 (1980)Search in Google Scholar

18 Gudiksen, P. H.; Dickerson, M. H.: A review of source term and dose estimation for the TMI-2 reactor accident. Lawrence Livermore National Lab., UCRL-JC-104077 (1990) and: EUR-13574 (V.1) (1991) p. 113–128Search in Google Scholar

19 Miller, K.; Gogolak, C.; Boyle, M.; Gulbin, J.: Radiation measurements following the Three Mile Island reactor accident. Environmental Measurement Laboratory, U.S. Department of Energy, NY, EML-357 (May 1979)10.2172/6134501Search in Google Scholar

20 Chernobyl ten years on radiological and health impact. NEA Radiation Protection, Nuclear Energy Agency of the OECD (November 1995)Search in Google Scholar

21 Summary report on the post-accident review meeting on the Chernobyl accident. Report by the International Nuclear Safety Advisory Group, Safety Series No. 75-INSAG-1, International Atomic Energy Agency (1986)Search in Google Scholar

22 Gudiksen, P. H.; Harvey, T. F; Lange, R.: Chernobyl source term, atmospheric ispersion, and dose estimation. Health Physics 57 (1989) 697 and: Chernobyl source term estimation. Lawrence Livermore National Lab., UCRL-JC-103413 (1990) and: Chernobyl source term estimation. EUR-13574 (V.1) (1991) p. 93–11210.1097/00004032-198911000-00001Search in Google Scholar PubMed

23 Bowyer, T. W.; Abel, K. H.; Hensley, W. K.; Panisko, M. E.; Perkins, R. W.: Ambient Xe-133 levels in the northwest US. J. Environ. Radioactivity 37 (1997) 14310.1016/S0265-931X(97)00005-2Search in Google Scholar

24 Ritzman, R. L.; Aber, E. F.; Alexander, C.; Fontana, M. H.; Landstrom, D. K.; Lessor, D. L.; McMurry, H. L.; Morrison, D. L.; Owzarski, P. C.; Parker, G. W.; Parsly, L. F.; Pobereskin, M.; Postma, A. K.; Rosenberg, H. S.; Yuill, W. A.: Release of radioactivity in reactor accidents, in: Reactor safety study; An assessment of accident risks in U.S. commercial nuclear power plants. WASH-1400 (NUREG-75/014), Appendix VII, U.S. Nuclear Regulatory Commission (October 1975)Search in Google Scholar

25 Wichner, R. P.; Weber, C. F.; Hodge, S. A.; Beahm, E. C.; Wright, A. L.: Noble gas, iodine, and cesium transport in a postulated loss of decay heat removal accident at Browns Ferry. Oak Ridge National Laboratory, NUREG/CR–3617 , ORNL/TM-9028 (August 1984)Search in Google Scholar

26 Tracy, B. L.; Jean, M.; MacGillivray, K.; Trudel, S.: Use of global Atmospheric transport Model (CANERM) for evaluating a xenon CTBT network. CTBT/PC-III/WGB/CA/1 (1998)Search in Google Scholar

27 ORIGEN2.1, Oak Ridge Isotope GENeration and Depletion code. Oak Ridge National Laboratory (1999)Search in Google Scholar

28 Croff, A. G.: ORIGEN2: A versatile computer code for calculating the nuclide composition and characteristics of nuclear materials. Nuclear Technology 62 (1983) 33510.13182/NT83-1Search in Google Scholar

29 England, T. R.; Rider, B. F.: Evaluation and compilation of fission product yield 1993. La-SUB-94-170, Los Alamos National Lab., NM USA (1995)10.2172/10103145Search in Google Scholar

30 De Geer; L.-E.: Oh how I love Bateman equations. Internal technical note, CTBTO/IDC/SM (May 1999)Search in Google Scholar

31 Firestone, R. B.; Shirley, V. S. (Ed.): Table of Isotopes, eighth edition. John Wiley & Sons (1996)Search in Google Scholar

32 Nir-El, Y.: Private Communication. Soreq Nuclear Research Centre, Yavne, Israel (March 2000)Search in Google Scholar

Received: 2001-06-10
Published Online: 2022-03-17

© 2001 Carl Hanser Verlag, München

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2001-0095/html?lang=en
Scroll to top button