Home Technology Calculation of the higher order eigenvalues for a homogeneous sphere using the FN method
Article
Licensed
Unlicensed Requires Authentication

Calculation of the higher order eigenvalues for a homogeneous sphere using the FN method

  • C. Yíldíz
Published/Copyright: March 17, 2022
Become an author with De Gruyter Brill

Abstract

The transport of monoenergetic neutrons in spherical geometry with forward scattering and vacuum boundary conditions is considered. The scaled transport equation is solved using the Fn method by considering the pseudo-slab problem. Numerical results for the fundamental and higher order eigenvalues are presented for several significant figures. Some selected results are compared with those obtained using various methods in the literature. Finally, a few remarks about the behavior of the criticality eigenvalue of the neutron transport equation with forward scattering is given.

Abstract

Untersucht wird der Transport monoenergetischer Neutronen in sphärischer Geometrie. Die Transportgleichung wird mit Hilfe der FN-Methode gelöst. Numerische Ergebnisse für die Eigenwerte höherer Ordnung werden vorgestellt für einige wichtige Fälle. Ausgewöhlte Ergebnisse werden verglichen mit Ergebnissen aus der Literatur, die mit verschiedenen anderen Methoden erhalten wurden. Den Abschluss bilden einige Bemerkungen zum Verhalten des Eigenwertes der Kritikalität der Neutronentransportgleichung mit Vorwärtsstreuung.

Acknowledgments

This research was partially supported by the Istanbul Technical University Research Foundation under grant 1372.

References

1 Carlvik, I.: Monoenergetic Critical Parameters and Decay Constants for Small Homogeneous Spheres and Thin Homogenous Slabs. Nucl. Sci. Eng. 31 (1968) 29510.13182/NSE31-295Search in Google Scholar

2 Sahni, D. C.; Sjöstrand, N. G.: Criticality and Time Eigenvalues in One-Speed Neutron Transport. Progr. Nucl. Energy 23 (1990) 24110.1016/0149-1970(90)90004-OSearch in Google Scholar

3 Hartman, J.: A Method to Solve the Integral Transport Equation Employing a Spatial Legendre Expansion. EUR 533e, Joint Nuclear Research Centre, Ispra, (1975)Search in Google Scholar

4 Kschwendt, H.: The SPN-PL Method for Neutron Transport in Homogeneous Slabs with Anisotropic Scattering. Nucl Sci. Eng. 44 (1971) 42310.13182/NSE71-A20173Search in Google Scholar

5 Garis, N. S.; Sjöstrand, N. G.: Approximations for Very-High-Order Eigenvalues in Neutrons Transport Theory. Kerntechnik 54 (1989) 18310.1515/kern-1989-540319Search in Google Scholar

6 Dahl, E. B.; Sjöstrand, N. G.: Eigenvalue Spectrum of Multiplying Slabs and Spheres for Monoenergetic Neutrons with Anisotropic Scattering. Nucl. Sci. Eng. 69 (1979 ) 11410.13182/NSE69-114Search in Google Scholar

7 Garis, N. S.: One-Speed Transport Eigenvalues for Reflected Slabs and Spheres. Nucl. Sci. Eng. 107 (1991) 34310.13182/NSE91-A23796Search in Google Scholar

8 Garis, N. S.: Time eigenvalues for One-Speed Neutrons in Reflected Slabs and Spheres. Kerntechnik 56 (1991) 3310.1515/kern-1991-560114Search in Google Scholar

9 Sahni, D. C.; Dahl, E. B.; Sjöstrand, N. G.: Real Criticality Eigenvalues of the One-Speed Linear Transport Operator. Transp. Theory Statist. Phys. 24 (1995) 129510.1080/00411459508206025Search in Google Scholar

10 Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and Time Eigenvalues for One-Speed Neutrons in a Slabs with forward and Backward Scattering. J. Phys. D.: Appl.Phys. 25 (1992) 138110.1088/0022-3727/25/10/001Search in Google Scholar

11 Yíldíz,, C.: Calculation of the higher order eigenvalues for a slab with forward-backward scattering using Fn method. Kerntechnik 65 (2000) 24010.1515/kern-2000-655-613Search in Google Scholar

12 Sanchez, R.; McCormick, N. J.: A Review of Neutron Transport Approximations. Nucl. Sci. Eng. 80 (1982) 48110.13182/NSE80-04-481Search in Google Scholar

13 Garcia, R D. M.; Siewert, C. E.: Benchmark Results in Radiative Transfer. Transp. Theory Statist. Phys. 14(4) (1985) 43710.1080/00411458508211687Search in Google Scholar

14 Garcia, R. D. M.: A Review of the Fn method in Particle Transport Theory. Transp. Theory Statist. Phys. 14 (1985) 39110.1080/00411458508211686Search in Google Scholar

15 Garcia, R D. M.; Siewert, C. E.; Thomas, J. R. Jr.: FN Method for Solving Transport Problems. Trans. Am. Nucl. Soc. 71 (1994) 212Search in Google Scholar

16 Garcia, R. D. M.; Siewert, C. E.: Multigroup Transport Theory. II. Numerical Results. Nucl Sci. Eng. 78 (1981) 31510.13182/NSE81-A21365Search in Google Scholar

17 Siewert, C. E.; Grandjean, P.: Three Basic Neutron-Transport Problems in Spherical Geometry. Nucl. Sci. Eng. 70 (1979) 9610.13182/NSE70-96Search in Google Scholar

18 Siewert, C. E.; Benoist, P.: The Fn Method in Neutron – Transport Theory. Part I Theory and Applications. Nucl. Sci. Eng. 69 (1979) 15610.13182/NSE79-1Search in Google Scholar

19 Grandjean, P.; Siewert C. E.: The FN Method in Neutron – Transport Theory. Part II Applications and Numerical Results. Nucl. Sci. Eng. 69 (1979) 16110.13182/NSE79-A20608Search in Google Scholar

20 Siewert, C. E.; Williams, M. R. R.: The Effect of Anisotropic Scattering a Synthetic on the Critical Kernel. Slab J. Phys. Problem D.: Appl. in Neutron Phys. Transport 11 (1977) 2031 Theory Using10.1088/0022-3727/10/15/007Search in Google Scholar

21 Inönü, E.: A Theorem on Anisotropic Scattering. Transp. Theory Statist. Phys. 3 (1973) 13710.1080/00411457308205276Search in Google Scholar

22 Pomraning, G. C.: The Criticality Problem for Highly Anisotropic Scattering. Transp. Theory Statist. Phys. 7 (1978) 16110.1080/00411457808204625Search in Google Scholar

23 Tezcan, C.; Yíldíz, C.: The Criticality Problems with the Fn Method for the FBIS Model. Annals Nucl. Energy 13 (1986) 34510.1016/0306-4549(86)90091-5Search in Google Scholar

24 Sahni, D. C.; Sjöstrand, N. G.: Time Eigenvalue Spectrum for One-Speed Neutron Transport in Spheres with Strong Forward-Backward Scattering. Annals Nucl. Energy 26 (1999) 34710.1016/S0306-4549(98)00072-3Search in Google Scholar

25 Yíldíz, C.: Influence of Anisotropic Scattering on the Size of the Time-Dependent Systems in Monoenergetic Neutron Transport. J. Phys. D.: Appl.Phys. 32 (1999) 31710.1088/0022-3727/32/3/020Search in Google Scholar

26 Williams, M. M. R.: The Energy-Dependent Backward-Forward Isotropic Scattering Model with Some Application to the Neutron Transport Equation. Ann. Nucl Energy 12 (1985) 16710.1016/0306-4549(85)90042-8Search in Google Scholar

27 Wosnicka, U.; Sjöstrand, N. G.: On a Problem with Strong Forward and Backward Neutron Scattering in Spheres. Ann. Nucl. Engergy 24 (1997) 127710.1016/S0306-4549(97)00043-1Search in Google Scholar

28 Mitsis, G. J.: Transport Solutions to the Monoenergetic Critical Problem. Nucl. Sci. Eng. 17 (1963) 5510.13182/NSE63-A17210Search in Google Scholar

29 Wu, S.; Siewert, C. E.: One-Speed Transport Theory for Spherical Media with Internal Sources and Incident Radiation. J. Appl, Math. Phys. (ZAMP) 26 (1975) 63710.1007/BF01594038Search in Google Scholar

30 Case, K. M.; Zweifel, P. F.: Linear Transport Theory. Addison-Wesley, New-York, (1967)Search in Google Scholar

31 Ellis, T. M. R.; Philips, I. R.: Programming in F. Essex CM202JE, Edinburgh Gate, (1988)Search in Google Scholar

Received: 2000-11-06
Published Online: 2022-03-17

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Calendar of Events
  3. Calendar of Events • Veranstaltungskalender
  4. Summaries
  5. Summaries/Kurzfassungen
  6. Notes
  7. Richtlinie VDI 3783 Blatt 12. Umweltmeteorologie – Physikalische Modellierung von Strömungs- und Ausbreitungsvorgängen in der atmosphärischen Grenzschicht – Windkanalanwendungen; Hrsg.: VDI Verein Deutscher Ingenieure, Kommission Reinhaltung der Luft (KRdl im VDI und DIN-Normenausschuss), Dezember 2000; 107,60 DM
  8. Comparison of plant efficiencies of various power conversion systems for high-temperature reactor modules
  9. Studies on the behaviour of a passive containment cooling system for the Indian Advanced Heavy Water Reactor
  10. Detonation waves in melt-coolant interaction
  11. Experimental study of the transient characteristics of a natural circulation loop under SBLOCA
  12. Calculation of the higher order eigenvalues for a homogeneous sphere using the FN method
  13. Books
  14. Safe Management of the Operating Lifetimes of Nuclear Power Plants
  15. Study of the possibility of high accuracy flow measurements with the pulsed neutron activation method
  16. The astrophysical S-factor for dd-reactions at keV-energy range
  17. Books
  18. Books • Bücher
  19. Monte Carlo analysis of accelerator-driven systems: Studies on spallation neutron yield and energy gain
  20. Subcritical nuclear systems and their stability against changes in the geometrical set-up
  21. Technical Notes
  22. An energy amplifier fluidized bed nuclear reactor concept
  23. An attempt to describe the swelling of U3Si 2 fuel by a simple formula
  24. European Commission initiative to promote technical harmonisation on risk-based decision making
  25. Patent
  26. Notes
  27. Note • Mitteilung
Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2001-0008/pdf
Scroll to top button