Home Dimitry Gawronsky: Reality and Actual Infinitesimals
Article
Licensed
Unlicensed Requires Authentication

Dimitry Gawronsky: Reality and Actual Infinitesimals

  • Hernán Pringe EMAIL logo
Published/Copyright: March 10, 2023
Become an author with De Gruyter Brill

Abstract

The aim of this paper is to analyze Dimitry Gawronsky’s doctrine of actual infinitesimals. I examine the peculiar connection that his critical idealism establishes between transcendental philosophy and mathematics. In particular, I reconstruct the relationship between Gawronsky’s differentials, Cantor’s transfinite numbers, Veronese’s trans-Archimedean numbers and Robinson’s hyperreal numbers. I argue that by means of his doctrine of actual infinitesimals, Gawronsky aims to provide an interpretation of calculus that eliminates any alleged given element in knowledge.

Article Note

The project leading to this paper has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 777786. The investigation is also part of the project CONICYT/FONDECYT Regular Nº 1190965, the project “La deducción trascendental de las categorías: nuevas perspectivas” PR65/19-22446 (Comunidad de Madrid and Universidad Complutense de Madrid) and the project CONICET PIP 11220200101740CO.

References

Bell, J. (2019): The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics. Springer: Cham.10.1007/978-3-030-18707-1Search in Google Scholar

Constituting Objectivity: Transcendental Approaches of Modern Physics (2009). Ed. by Bitbol, M., Kerszberg, P. and Petitot, J. Springer: Cham.Search in Google Scholar

Bos, H. (1974): “Differentials, higher order differentials and the derivative in the Leibnizian calculus”. In: Archive for the History of Exact Sciences 14, 1–90.10.1007/BF00327456Search in Google Scholar

Bottazzi, E. ; Kanovei, V. ; Katz, M. ; Mormann, T. and Sherry, D. (2019), “On mathematical realism and the applicability of hyperreals”. In: Mathematical Studies 51 (2), 200–224.10.15330/ms.51.2.200-224Search in Google Scholar

Boyer, C. (1949): The History of the Calculus and its Conceptual Development. New York: Dover.Search in Google Scholar

Cantor, G. (1883): Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Leipzig: B. G.Teubner. Reprinted in [Cantor 1932, 165–208]. English translation by W. D. Ewald in [Ewald 2007, 881–920].Search in Google Scholar

Cantor, G. (1884), Review of [Cohen 1883]. In: Deutsche Literaturzeitung 5 (Berlin, Feb 23), 266–268.Search in Google Scholar

Cantor, G. (1886), “Über die verschiedenen Standpunkte in Bezug auf das Aktuelle Unendliche,” Zeitschrift für Philosophie und philosophische Kritik 88, 224–233. Reprinted in [Cantor 1932, 370–376].Search in Google Scholar

Cantor, G. (1887): “Mitteilungen zur Lehre vom Transfiniten. I.” In: Zeitschrift für Philosophie und philosophische Kritik 91, 81–125. Reprinted in [Cantor 1890] and [Cantor 1932, 378–439].Search in Google Scholar

Cantor, G. (1890): Zur Lehre vom Transfiniten. Halle: C. E. M. Pfeffer.Search in Google Scholar

Cantor, G., (1932): Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Hrsg. von Ernest Zermelo, nebst einem Lebenslauf Cantors von A. Fraenkel. Berlin; reprinted Hildesheim: Olms, 1966.Search in Google Scholar

Cantor, G. (1991): Briefe, ed. Herbert Meschkowski, Winfried Nilson. Berlin.10.1007/978-3-642-74344-3Search in Google Scholar

Cassirer E. (1902): Leibniz’ System in seinen wissenschaftlichen Grundlagen. Marburg. In: Gesammelte Werke, Bd 1. Hamburg 1998.Search in Google Scholar

Cassirer, E. (1910): Substanzbegriff und Funktionsbegriff: Untersuchungen über die Grundfragen der Erkenntniskritik. Berlin. In: Gesammelte Werke, Bd 6. Hamburg 2000.Search in Google Scholar

Cantor, Georg: Briefe. Ed. Herbert Meschkowski, Winfried Nilson. Springer, Berlin etc10.1007/978-3-642-74344-3Search in Google Scholar

Cohen, Hermann (1877): Kants Begründung der Ethik. Berlin: F. Dümmlers.Search in Google Scholar

Cohen, H. (1883): Das Princip der Infinitesmal-Methode und seine Geschichte: ein Kapitel zur Grundlegung der Erkenntnisskritik. Berlin.Search in Google Scholar

Cohen, H. (1885): Kants Theorie der Erfahrung. 2nd Edition, Berlin: Cassirer.Search in Google Scholar

Cohen, H. (1902): Logik der reinen Erkenntnis. System der Philosophie, 1. 1st Edition. Berlin.Search in Google Scholar

Cohen, H. (1914): “Einleitung mit kritischem Nachtrag zur Geschichte des Materialismus von F. A. Lange.” 3rd Edition. Reedited by H. Holzhey, Hildesheim, 1984.Search in Google Scholar

Dauben, J. (1979): Georg Cantor: His Mathematics and Philosophy of the Infinite. Cambridge, Massachusetts.Search in Google Scholar

Dauben, J. (1995): Abraham Robinson. The Creation of Nonstandard Analysis: A Personal and Mathematical Odyssey. Princeton, New Jersey.Search in Google Scholar

Edel, G. (1988): Von der Vernunftkritik zur Erkenntnislogik. Die Entwicklung der theoretischen Philosophie Hermann Cohens. Freiburg/München.Search in Google Scholar

Real Numbers, Generalizations of the Reals, and Theories of Continua. (1994) Ed. by P. Ehrlich. Dordrecht, Holland.Search in Google Scholar

Ehrlich, P. (2006): “The Rise of non-Archimedean mathematics and the roots of a misconception I: The emergence of non-Archimedean systems of magnitudes.” In: Arch Hist Exact Sci 60, 1–12110.1007/s00407-005-0102-4Search in Google Scholar

From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume II. (2007). Ed. by W. B. Ewald. Oxford.Search in Google Scholar

Ferrari, M. (2011): “Dimitrij Gawronsky und Ernst Cassirer: Zur Geschichte der Marburger Schule zwischen Deutschland und Russland.” In: Gegenstandsbestimmung und Selbstgestaltung. Transzendentalphilosophie im Anschluss an Werner Flach. Ed. by Ch. Krijnen und K. Zeidler. Würzburg 2011, 89–106.Search in Google Scholar

Fisher G. (1994): “Veronese’s Non-Archimedean Linear Continuum.” In: Real Numbers, Generalizations of the Reals, and Theories of Continua (1994). Ed. by P. Ehrlich. Kluwer Academic Publishers. Dordrecht, Holland, pp. 107–145.10.1007/978-94-015-8248-3_4Search in Google Scholar

Fletcher, P. ; Hrbacek, K. ; Kanovei, V. ; Katz, M. ; Lobry, C. ; Sanders, S. (2017), “Approaches to analysis with infinitesimals following Robinson, Nelson, and others,” Real Analysis Exchange 42, no. 2, 193–252.10.14321/realanalexch.42.2.0193Search in Google Scholar

Fraenkel, A. A. (1953): Abstract Set Theory, North-Holland Publishing Company, Amsterdam.Search in Google Scholar

Fraenkel, A. A. (2016): Recollections of a Jewish Mathematician in Germany. Basel.10.1007/978-3-319-30847-0Search in Google Scholar

Frege, G. (1885): Rezension von: H. Cohen, Das Prinzip der Infinitesimal-Methode und seine Geschichte. In: Zeitschrift für Philosophie und philosophische Kritik 87, 324–329.Search in Google Scholar

Gawronsky, D. (1910): Das Urteil der Realität und seine mathematischen Voraussetzungen. Marburg.Search in Google Scholar

Giovanelli, M. (2011): Reality and Negation. Kant’s Principle of Anticipations of Perception. Dordrecht.10.1007/978-94-007-0065-9Search in Google Scholar

Giovanelli, M. (2016): “Hermann Cohen’s Das Princip der Infinitesimal-Methode: The history of an unsuccessful book.” In: Studies in History and Philosophy of Science 58, 9–23.10.1016/j.shpsa.2016.02.002Search in Google Scholar

González Porta, M. (2011): Estudos neokantianos. São Paulo.Search in Google Scholar

Kant and Neo-Kantianism (2020). Kant Yearbook 12. Ed. by D. Heidemann. Boston/Berlin.Search in Google Scholar

Holzhey, H. (1986): Cohen und Natorp, 2 vol. Basel/Stuttgart.Search in Google Scholar

Kanovei, V ; Katz, K. ; Katz, M. ; Mormann, T. (2018): “What makes a theory of infinitesimals useful? A view by Klein and Fraenkel.” In: Journal of Humanistic Mathematics, 8 (1), 108–119.10.5642/jhummath.201801.07Search in Google Scholar

Kauark-Leite, P. (2009): “The Transcendental Role of the Principle of Anticipations of Perception in Quantum Mechanics.” In: Constituting Objectivity: Transcendental Approaches of Modern Physics (2009). Ed. by M. Bitbol, P. Kerszberg, and J. Petitot. Cham, 203–213.10.1007/978-1-4020-9510-8_12Search in Google Scholar

Kerry, B., (1885): “Ueber G. Cantors Mannigfaltigkeitsuntersuchungen.” In: Vierteljahresschrift für wissenschaftliche Philosophie 9, 191–232.Search in Google Scholar

Meschkowski, H. (1965): “Aus den Briefbüchern Georg Cantor.” In: Archive for History of Exact Sciences 2, 503–519.10.1007/BF00324881Search in Google Scholar

Moore, M. (2002), “A Cantorian Argument Against Infinitesimals,” Synthese 133, pp. 305–330.10.1023/A:1021204522829Search in Google Scholar

Mormann, Thomas and Katz, Mikhail (2013): “Infinitesimals as an issue of neo-Kantian philosophy of science.” In: Hopos: The Journal of the International Society for the History of Philosophy of Science 3 (2), 236–280.10.1086/671348Search in Google Scholar

Mormann, Thomas (2018): “Zur Mathematischen Wissenschaftsphilosophie des Marburger Neukantianismus.” In: Damböck, Christian: Philosophie und Wissenschaft bei Hermann Cohen Cham, 101–134.10.1007/978-3-319-58023-4_5Search in Google Scholar

Moynahan, Gregory B. (2018): “The Challenge of Psychology in the Development of Cohen’s System of Philosophy and the Marburg School Project.” In: Damböck, Christian: Philosophie und Wissenschaft bei Hermann Cohen. Cham: Springer, 41–76.10.1007/978-3-319-58023-4_3Search in Google Scholar

Natorp P. (1910): Die logischen Grundlagen der exakten Wissenschaften. Teubner, Leipzig.Search in Google Scholar

Natorp P. (1912): “Kant und die Marburger Schule.” In: Kant-Studien 17, 193–221.10.1515/kant.1912.17.1-3.193Search in Google Scholar

Natorp, Paul (1986): “Zu Cohens Logik.” In: Holzhey, H.: Cohen und Natorp, vol. 2, 43–78.Search in Google Scholar

Peiffer-Reuter, R. (1989): “L’infini relatif chez Veronese et Natorp.” In: (Eds.). (1989). La mathématique nonstandard. Ed. by H. Barreau, J. Harthong. Paris, 117–142.Search in Google Scholar

Petitot, J. (1994): “Esthétique transcendantale et physique mathématique.” In: Neukantianismus. Perspektiven und Probleme. Ed. by H. Holzhey and E.-W. Orth. Würzburg, 185–213.Search in Google Scholar

Pollok, K. (2010): “The ‘Transcendental Method.’ On the Reception of the Critique of Pure Reason in Neo-Kantianism.” In: The Cambridge Companion to Kant’s Critique of Pure Reason. Ed. by P. Guyer. CUP, 2010, 346–379.10.1017/CCOL9780521883863.016Search in Google Scholar

Proietti Carlo (2008): “Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor.” In: History and Philosophy of Logic 29 (4), 343–359.10.1080/01445340802025768Search in Google Scholar

Robinson, A. (1966): Non-standard Analysis. North-Holland Publishing Company, Amsterdam.Search in Google Scholar

Robinson, A. (1975): “Concerning Progress.” In: The Philosophy of Mathematics. Studies in Logic and the Foundations of Mathematics 80, 41–52.10.1016/S0049-237X(08)71942-6Search in Google Scholar

Russell, Bertrand (1903): The Principles of Mathematics, Cambridge.Search in Google Scholar

Schulthess, Peter (1984): “Introduction to: Das Prinzip der Infinitesimal-Methode und seine Geschichte.” In: Hermann Cohen: Das Prinzip der Infinitesimal-Methode und seine Geschichte. Hildesheim/Zürich/New York, 7–46.Search in Google Scholar

Veit, Bernd (2017): Hermann Cohens Infinitesimal-Logik, Dissertation, Universität Würzburg.Search in Google Scholar

Veronese, G. (1891): Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare. Lezioni per la Scuola di magistero in Matematica. Padova, Tipografia del Seminario.Search in Google Scholar

Veronese, G. (1894): Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt. Mit Genehmigung des Verfassers nach einer neuen Bearbeitung des Originals übersetzt von Adolf Schepp, Leipzig: Teubner.Search in Google Scholar

Published Online: 2023-03-10
Published in Print: 2023-03-08

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Titelseiten
  2. Abhandlungen
  3. Antinomy of Reason or Transcendental Deduction? Making Sense of the Dialectic of Pure Practical Reason
  4. Analysis and Necessity in Arithmetic in Light of Maimon’s Concept of Number as Ratio
  5. Dimitry Gawronsky: Reality and Actual Infinitesimals
  6. Das Problem nicht-körperlicher Raumhaftigkeit
  7. Berichte und Diskussionen
  8. A Truly Cosmopolitan Philosopher: Images of Kant in Belo Horizonte
  9. Buchbesprechungen
  10. Manfred Baum: Kleine Schriften 2. Arbeiten zu Kants praktischer Philosophie. Hrsg. von Dieter Hüning. Berlin/Boston: Walter de Gruyter, 2020. 391 Seiten. ISBN 978-3-11-060377-4.
  11. Christian Garve (1742–1798). Philosoph und Philologe der Aufklärung. Hrsg. von Udo Roth u. Gideon Stiening [= Werkprofile, Bd. 14]. Berlin/Boston: de Gruyter 2021. IX/400 Seiten. ISBN 978-3-11-064590-3. – Christian Garve: Ausgewählte Werke, Bd. 1: Kleine Schriften. Hrsg. v. Udo Roth u. Gideon Stiening [= Werkprofile, Bd. 15.1]. Berlin/Boston: de Gruyter 2021. XXIX/414 Seiten. ISBN 978-3-11-064592-7.
  12. Kant’s Concept of Dignity. Ed. by Yasushi Kato and Gerhard Schönrich. Berlin/Boston: De Gruyter, 2020. 330 pages. ISBN 9783110661200. [KSEH 209]
  13. Anton Wilhelm Amo’s Philosophical Dissertations on Mind and Body. Edited and translated by Stephen Menn and Justin E. H. Smith. New York: Oxford University Press, 2020. 248 pp. ISBN 9780197501627.
  14. George Huxford: Kant and Theodicy. A Search for an Answer to the Problem of Evil. Lanham/Boulder/New York/London: Lexington, 2020. XXIII, 149 Seiten. ISBN 978-1-4985-9723-4.
  15. Kasuistik und Theorie des Gewissens. Von Pascal bis Kant. Hrsg. von Sara Di Giulio und Alberto Frigo. Berlin/Boston: De Gruyter, 2020. VIII und 343 Seiten. ISBN 978-3-11-062185-3.
  16. Wilhelm Dilthey: Briefwechsel. Band IV: 1905–1911. Herausgegeben von Gudrun Kühne-Bertram und Hans-Ulrich Lessing. Göttingen: Vandenhoeck & Ruprecht, 2022. ISBN 978-3-525-30202-6. 384 Seiten.
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kant-2023-2012/html
Scroll to top button