Home Evidence-Based Growth Hormone Therapy Prediction Models
Article
Licensed
Unlicensed Requires Authentication

Evidence-Based Growth Hormone Therapy Prediction Models

London Centre for Paediatric Endocrinology and Metabolism and Department of Epidemiology, Institute of Child Health, University College London, London, UK
  • Peter C. Hindmarsh and Tim J. Cole
Published/Copyright: July 22, 2014

ABSTRACT

Prediction models describing the response of various pathophysiological states to intervention can be of value in confirming a diagnosis, determining the prognosis and promoting compliance with treatment. The rigorous evaluation process of evidence-based medicine, used to assess any diagnostic test or therapeutic intervention, should be applied to studies reporting the development, validation and application of these prediction models. The models can provide only an estimate of the average effect to be expected, so the failure of an individual to exhibit an ‘average’ response does not necessarily imply a problem with that patient. Further development of the models is required to overcome inherent statistical problems and to allow greater applicability to the individual patient.

Published Online: 2014-07-22
Published in Print: 2000-12-01

© 2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Titelei
  2. TABLE OF CONTENTS
  3. Foreword
  4. What Happens When Growth Hormone is Discontinued at Completion of Growth? Metabolic Aspects
  5. Growth Hormone Deficiency and Peak Bone Mass
  6. Optimal Strategy for Management of Pituitary Disease in the Growth Hormone-Deficient Teenager
  7. Ethical Dilemmas in Pediatric Endocrinology: Growth Hormone for Short Normal Children
  8. Evidence-Based Approach to Growth Hormone Replacement Therapy in Adults, with Special Emphasis on Body Composition
  9. Evidence-Based Growth Hormone Therapy Prediction Models
  10. New Paradigms for Growth Hormone Treatment in the 21st Century: Prediction Models
  11. Role of Insulin-like Growth Factor Monitoring in Optimizing Growth Hormone Therapy
  12. Knockout Mice Challenge Our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes Mellitus
  13. Type 2 Diabetes Mellitus in Children: Pathophysiology and Risk Factors
  14. Emergence of Type 2 Diabetes Mellitus in Children: Epidemiological Evidence
  15. Treatment of Type 2 Diabetes Mellitus in Children and Adolescents
  16. Diagnosis of Maturity-Onset Diabetes of the Young in the Pediatric Diabetes Clinic
  17. Thrifty Genotypes and Phenotypes in the Pathogenesis of Type 2 Diabetes Mellitus
  18. Estradiol: A Protective Factor in the Adult Brain
  19. Estrogen Treatment and Estrogen Suppression: Metabolic Effects in Adolescence
  20. Estrogen, Bone, Growth and Sex: A Sea Change in Conventional Wisdom
  21. Route-Dependent Endocrine and Metabolic Effects of Estrogen Replacement Therapy
  22. Telomerase and the Cellular Lifespan: Implications for the Aging Process
  23. Human Aging and Progeria
  24. A Role for the Somatotropic Axis in Neural Development, Injury and Disease
  25. Hypothalamic Growth Hormone-Insulin-like Growth Factor-I Axis across the Human Life Span
  26. The Lost Voice: A History of the Castrato
  27. SELECTED POSTER ABSTRACTS
  28. GROWTH. FETAL GROWTH. SGA
  29. SYNDROMES: TURNER. PRADER-WILLI. NOONAN. PHP. OTHERS
  30. GHD. HYPOPITUITARISM. KIGS
  31. METABOLIC. GENETIC. ADULT. ACROMEGALY
  32. GH. IGF. IGFBPs
  33. GROWTH IN SYSTEMIC DISEASE. CRI. RICKETS. STEROIDS
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jpem-2000-s608/html
Scroll to top button