Home Technology Impact of impulse profile on the soliton microcombs for high-capacity FSO-WDM-PoLSK link
Article
Licensed
Unlicensed Requires Authentication

Impact of impulse profile on the soliton microcombs for high-capacity FSO-WDM-PoLSK link

  • Amadou Soumahoro ORCID logo EMAIL logo , Douatia Koné and Aladji Kamagaté
Published/Copyright: October 13, 2025
Become an author with De Gruyter Brill

Abstract

Improving the reliability and spectral efficiency of free-space optical (FSO) systems remains a major challenge under degraded channel conditions. Solitons represent a promising solution thanks to their ability to maintain shape through a balance between dispersion and nonlinearity. This work analyzes the impact of input pulse shaping on soliton stability in a WDM-based FSO link operating in subtropical conditions (Côte d’Ivoire). Four pulse profiles, Gaussian, super-Gaussian, Lorentzian, and hyperbolic secant are evaluated in terms of energy efficiency, bit error rate (BER), outage probability, spectral efficiency, and transmission distance. The system employs polarization shift keying (PolSK), 35 WDM channels spaced by 1 nm, and a gamma–gamma turbulence model. Results demonstrate the superiority of the Sech profile, which meets the equilibrium conditions of dissipative Kerr solitons. It achieves a reduced FWHM (∼0.105 ns), sub-picosecond jitter (<1 ps), enhanced PolSK stability, and lower power consumption. Sech pulses reach BER = 10−6 at 16 dB SNR, sustain a maximum capacity of 5 bits/sym (175 Gbit/s over 35 channels), and extend transmission distance up to ∼25 km at 15 dB SNR, a 77 % gain over Gaussian and fivefold over super-Gaussian pulses. These findings highlight the critical role of pulse shaping in resilient, high-capacity FSO systems.


Corresponding author: Amadou Soumahoro, Department of Mathematics, Physics and Chemistry, Photonics and Wave Propagation Research Team (PHONDE), Péléforo Gon Coulibaly University, Korhogo, Ivory Coast, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable. This study did not involve human participants, personal data, or animal experiments.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: OpenAI GPT-5 was used solely to improve the clarity, grammar, and English expression of the manuscript. Learning Tools.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. UIT. Engagée à connecter le monde. ITU. [Online]. Available: https://www.itu.int/fr/Pages/default.aspx [Accessed 15 Jun 2025].Search in Google Scholar

2. Khalighi, MA, Uysal, M. Survey on free space optical communication: a communication theory perspective. Commun Surv Tutorials, IEEE 2014;16:2231–58. https://doi.org/10.1109/COMST.2014.2329501.Search in Google Scholar

3. Al-Gailani, SA, Salleh, MFM, Salem, AA, Shaddad, RQ, Sheikh, UU, Algeelani, NA, et al.. A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 2020;9:7353–73. https://doi.org/10.1109/access.2020.3048049.Search in Google Scholar

4. Trichili, A, Cox, MA, Ooi, BS, Alouini, M-S. Roadmap to free space optics. J Opt Soc Am B 2020;37:A184–201. https://doi.org/10.1364/JOSAB.399168.Search in Google Scholar

5. Sood, P, Sharma, A, Chandni, C. Analysis of FSO system and its challenges – a review. Int J Comput Appl 2018;179:42–5.10.5120/ijca2018917353Search in Google Scholar

6. Magidi, S, Jabeena, A. Free space optics, channel models and hybrid modulation schemes: a review. Wirel Pers Commun 2021;119:2951–74. https://doi.org/10.1007/s11277-021-08380-9.Search in Google Scholar

7. Alsulami, O, Hussein, AT, Alresheedi, MT, Elmirghani, JM. Optical wireless communication systems, a survey. arXiv preprint arXiv:1812.11544; 2018. [Online]. Available: https://arxiv.org/abs/1812.11544 [Accessed 11 Jun 2025].Search in Google Scholar

8. Ekwe, OA, Abioye, AE, Oluwe, MO, Okoro, KC. Effective fading reduction techniques in wireless communication system. IOSR J Electron Commun Eng 2014;9:35–43. https://doi.org/10.9790/2834-09423543.Search in Google Scholar

9. Wasiczko, LM, Davis, CC. Aperture averaging of optical scintillations in the atmosphere: experimental results. Atmos Propag II 2005;5793:197–208. https://doi.org/10.1117/12.606020.Search in Google Scholar

10. Hardy, JW. Adaptive optics for astronomical telescopes. New York: Oxford University Press; 1998 [Online]. https://books.google.com [Accessed 12 Jul 2025].Search in Google Scholar

11. Rinaldi, L. Mitigation of atmospheric turbulence effects on optical links by integrated optics [Ph.D. dissertation]. Gif-sur-Yvette, France: Université Paris-Saclay; 2022 [Online]. https://theses.hal.science/tel-03639080/ [Accessed 12 Jul 2025].Search in Google Scholar

12. Zhang, G, Wu, J, Li, Y, Wang, X, Yu, X, Gao, S, et al.. A review of variable-beam divergence angle FSO communication systems. Photonics 2023;10:Art. no. 7. https://doi.org/10.3390/photonics10070756.Search in Google Scholar

13. Yao, H, Wang, W, Zhou, C, Cao, J, Hao, Q, Chen, C, et al.. Optical adaptive power control based on atmospheric channel reciprocity for mitigating turbulence disturbances in free-space optics communication. Opt Express 2023;31:36992–7010. https://doi.org/10.1364/OE.498103.Search in Google Scholar PubMed

14. Farooq, E, Sahu, A, Gupta, SK. Survey on FSO communication system – limitations and enhancement techniques. Opt Wireless Technol 2018;472:255–64. https://doi.org/10.1007/978-981-10-7395-3_29.Search in Google Scholar

15. Mohammed, AJ, Ali, EH. Performances study of PSK and ASK modulation technique under atmospheric turbulence in FSO communication system. Eng Technol J 2024;42:1–8.10.30684/etj.2023.143196.1567Search in Google Scholar

16. Sangwara, N, Pornsuwancharoen, N, Yupapin, PP. Soliton pulses generation and filtering using micro-ring resonators for DWDM-based soliton communication. Optik 2010;121:1263–7. https://doi.org/10.1016/j.ijleo.2009.02.013.Search in Google Scholar

17. Shahidinejad, A. Soliton pulse generation for WDM-based free space optics communication using microring resonators. J Opt Commun 2021;42:59–64. https://doi.org/10.1515/joc-2018-0051.Search in Google Scholar

18. Dutta, B, Kuiri, B, Atta, R, Sarkar, N, Patra, AS. Numerical evaluation of bidirectional high-speed data transmission over turbulence tolerable FSO link employing WDM-OAM multiplexing and DP-QPSK modulation techniques. Opt Commun 2023;546:129753. https://doi.org/10.1016/j.optcom.2023.129753.Search in Google Scholar

19. Afroozeh, A, Amiri, IS, Jalil, MA, Kouhnavard, M, Ali, J, Yupapin, PP. Multi soliton generation for enhance optical communication. Appl Mech Mater 2011;83:136–40. https://doi.org/10.4028/www.scientific.net/AMM.83.136.Search in Google Scholar

20. Koné, D, Mené, NM, Kamagaté, A. Wavelength-division multiplexing (WDM) FSO communications with soliton microcombs. J Mod Opt 2024;71:240–54. https://doi.org/10.1080/09500340.2024.2407071.Search in Google Scholar

21. Brasch, V, Geiselmann, M, Herr, T, Lihachev, G, Pfeiffer, MHP, Gorodetsky, ML, et al.. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 2016;351:357–60. https://doi.org/10.1126/science.aad4811.Search in Google Scholar PubMed

22. Herr, T, Brasch, V, Jost, JD, Wang, CY, Kondratiev, NM, Gorodetsky, ML, et al.. Temporal solitons in optical microresonators. Nat Photonics 2014;8:145–52. https://doi.org/10.1038/nphoton.2013.343.Search in Google Scholar

23. Elsayed, EE, Yakout, MA, Samra, AS. Turbulence-resilient adaptive modulation and diversity coding for DWDM-based hybrid MIMO-RF/FSO systems. J Opt Commun 2025;46:45–58. https://doi.org/10.1515/joc-2025-0181.Search in Google Scholar

24. Bibi, S, Baig, MI, Qamar, F, Shahzadi, R. A comprehensive survey of free-space optical communication – modulation schemes, advantages, challenges and mitigations. J Opt Commun 2025;45:s2373–85. https://doi.org/10.1515/joc-2023-0265.Search in Google Scholar

25. Singh, H, Miglani, R, Mittal, N, Gaba, GS, Masud, M, Aljahdali, S. Design and analysis of commercially viable free-space optical communication link for diverse beam divergence profiles. Front Phys 2021;9:778734. https://doi.org/10.3389/fphy.2021.778734.Search in Google Scholar

26. Boggio, JC, Bodenmüller, D, Ahmed, S, Wabnitz, S, Modotto, D, Hansson, T. Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling. Nat Commun 2022;13:1292. https://doi.org/10.1038/s41467-022-28927-z.Search in Google Scholar PubMed PubMed Central

27. Guidry, MA, Lukin, DM, Yang, KY, Trivedi, R, Vučković, J. Quantum optics of soliton microcombs. Nat Photonics 2022;16:52–8. https://doi.org/10.1038/s41566-021-00901-z.Search in Google Scholar

28. Bawankar, YR, Singh, A. Microring resonators based applications in silicon photonics—a review. In: Proc. 5th Conf. on Information and Communication Technology (CICT). IEEE; 2021:1–6 pp. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9672427/ [Accessed 14 May 2025].10.1109/CICT53865.2020.9672427Search in Google Scholar

29. Wang, W, Wang, L, Zhang, W. Advances in soliton microcomb generation. Adv Photon 2020;2:034001. https://doi.org/10.1117/1.AP.2.3.034001.Search in Google Scholar

30. Saeung, P, Yupapin, PP. Design of optical ring resonator filters for WDM applications. In: Int. Workshop and Conf. on Photonics and Nanotechnology 2007. SPIE; 2008:140–6 pp.10.1117/12.799425Search in Google Scholar

31. Conover, CWS. Effects of pulse shape on strongly driven two-level systems. Phys Rev A 2011;84:063416. https://doi.org/10.1103/PhysRevA.84.063416.Search in Google Scholar

32. Mihov, IS, Vitanov, NV Pulse shape effects in qubit dynamics demonstrated on an IBM quantum computer; Aug. 26, 2023. [Online]. Available: https://arxiv.org/abs/2301.10004. https://doi.org/10.48550/arXiv.2301.10004.Search in Google Scholar

33. Amiri, IS, Ali, J, Yupapin, PP. Enhancement of FSR and finesse using add/drop filter and PANDA ring resonator systems. Int J Mod Phys B 2012;26:1250034. https://doi.org/10.1142/S0217979212500348.Search in Google Scholar

34. Shao, W, Wang, Y, Jia, S, Xie, Z, Gao, D, Wang, W, et al.. Terabit FSO communication based on a soliton microcomb. Photon Res 2022;10:2802–8. https://doi.org/10.1364/PRJ.473559.Search in Google Scholar

35. Koné, D, Kamenan, KA, Kamagaté, A. Improving FSO link performance using PolSK modulation. Phys Sci Int J 2024;28:PSIJ-115250.10.9734/psij/2024/v28i3829Search in Google Scholar

36. Balsells, JMG, Jurado-Navas, A, Castillo-Vazquez, M, Moreno-Garrido, AB, Puerta-Notario, A. Advantages of solitonic shape pulses for full-optical wireless communication links. Chin Opt Lett 2012;10:040101. https://doi.org/10.3788/col201210.040101.Search in Google Scholar

37. Singh, M. Performance analysis of WDM-FSO system under adverse weather conditions. Photonic Netw Commun 2018;36:1–10. https://doi.org/10.1007/s11107-018-0763-y.Search in Google Scholar

38. Agrawal, GP. Return-to-zero pulses and duty cycle (section 4.1). In: Fiber-optic communication systems, 4th ed. Hoboken, NJ: Wiley; 2010.10.1002/9780470918524Search in Google Scholar

39. Saleh, BEA, Teich, MC. Fundamentals of photonics, 2nd ed. Hoboken, NJ: Wiley-Interscience; 2007:103 p.Search in Google Scholar

40. Agrawal, GP. Pulse formats and duty cycle (chapter 2). In: Lightwave technology: telecommunication systems. Hoboken, NJ: Wiley; 2005.10.1002/047174140XSearch in Google Scholar

41. Farès, H, Glattli, CD, Louët, Y, Moy, C, Palicot, J, Roulleau, PS. Nouvelle modulation de phase à bande latérale unique. In: Journées Scientifiques de l’URSI; 2017. [Online]. Available: https://hal.science/hal-02087971/.Search in Google Scholar

42. Pace, D. Exponential frequency spectrum and lorentzian pulses [Ph.D. dissertation]. Oakland, California: University of California; 2010 [Online]. Available from: https://davidpace.com/thesis-chapter-4-exponential-frequency-spectrum-and-lorentzian-pulses-part-1/.Search in Google Scholar

43. Andrews, LC, Phillips, RL. Laser beam propagation through random media, 2nd ed. Bellingham, WA: SPIE Press; 2005 [Online]. https://stars.library.ucf.edu/scopus2000/3722/ [Accessed 16 May 2025].10.1117/3.626196Search in Google Scholar

44. Okilly, AH, Baek, J. Optimal design analysis with simulation and experimental performance investigation of high-power density telecom PFC converters. Appl Sci 2021;11:7911. https://doi.org/10.3390/app11177911.Search in Google Scholar

45. Singh, M, Malhotra, J. Performance comparison of different modulation schemes in high-speed MDM based radio over FSO transmission link under the effect of atmospheric turbulence using aperture averaging. Wirel Pers Commun 2020;111:825–42. https://doi.org/10.1007/s11277-019-06886-x.Search in Google Scholar

46. Ghassemlooy, Z, Popoola, W, Rajbhandari, S. Optical wireless communications: system and channel modelling with Matlab. Boca Raton, FL: CRC Press; 2019 [Online]. https://www.taylorfrancis.com/books/mono/10.1201/9781315151724/ [Accessed 11 Jun 2025].10.1201/9781315151724Search in Google Scholar

47. Jeyaseelan, J, Kumar, DS, Caroline, BE. PolSK and ASK modulation techniques based BER analysis of WDM-FSO system for under turbulence conditions. Wirel Pers Commun 2018;103:3221–37. https://doi.org/10.1007/s11277-018-6004-y.Search in Google Scholar

48. Saw, BK, Janyani, V, Singh, G. Coherent-circular polarized shift keying modulation analysis over Málaga distribution and distribution with pointing errors in free space optical communication. Opt Quant Electron 2023;55:1135. https://doi.org/10.1007/s11082-023-05297-4.Search in Google Scholar

49. Wolfram Functions Site. Meijer G functions. Available: http://functions.wolfram.com/PDF/MeijerG.pdf.Search in Google Scholar

50. Majumdar, AK, Ricklin, JC. Free-space laser communications: principles and advances. New York: Springer; 2010 [Online]. https://books.google.com/books?hl=fr&lr=&id=-wj39a3oTecC [Accessed 10 Jun 2025].Search in Google Scholar

51. Xu, Z, Xu, G, Zheng, Z. BER and channel capacity performance of an FSO communication system over atmospheric turbulence with different types of noise. Sensors 2021;21:3454. https://doi.org/10.3390/s21103454.Search in Google Scholar PubMed PubMed Central

52. Xu, G, Zhang, N, Xu, M, Xu, Z, Zhang, Q, Song, Z. Outage probability and average BER of UAV-assisted dual-hop FSO communication with amplify-and-forward relaying. IEEE Trans Veh Technol 2023;72:8287–302. https://doi.org/10.1109/tvt.2023.3252822.Search in Google Scholar

53. Deroh, M, Lucas, E, Kibler, B. Dispersion engineering in a Brillouin fiber laser cavity for Kerr frequency comb formation. Opt Lett 2023;48:6388–91. https://doi.org/10.1364/ol.506610.Search in Google Scholar

54. B. EN. 60825-1: 2014, safety of laser products. Part 1: equipment classification and requirements. The British Standards Institution; 2014.Search in Google Scholar

55. Ayela, AM, Edah, G, Biswas, A, Zhou, Q, Yildirim, Y, Khan, S, et al.. Dynamical system of optical soliton parameters for anti-cubic and generalized anti-cubic nonlinearities with super-Gaussian and super-sech pulses. Opt Appl 2022;52:109–23. https://doi.org/10.37190/oa220109.Search in Google Scholar

56. Paschotta, DR. Sech2-shaped pulses. In: RP photonics encyclopedia; 2006. [Online]. Available: https://www.rp-photonics.com/sech2_shaped_pulses.html [Accessed 26 Jun 2025].Search in Google Scholar

57. Soumahoro, A, Koné, D, Kamagaté, A. Evaluation of pulse shapes on the reception performance of an FSO-WDM-PolSK system. Int J Phys 2025;13:80–90.10.12691/ijp-13-4-1Search in Google Scholar

58. Chen, K, Chen, S, Yin, B, Li, W, Feng, L, Li, Y, et al.. Deterministic generation of single soliton microcombs with enhanced stability using thermal self-starting and simplified temperature control. Phys Rev 2025;111:053516. https://doi.org/10.1103/PhysRevA.111.053516.Search in Google Scholar

59. Pfeiffer, MHP, Kordts, A, Brasch, V, Zervas, M, Geiselmann, M, Jost, JD, et al.. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 2016;3:20. https://doi.org/10.1364/OPTICA.3.000020.Search in Google Scholar

60. Song, Y, Zhu, X, Zuo, X, Huang, G, Loncar, M. Stable gigahertz- and mmWave-repetition-rate soliton microcombs on X-cut lithium niobate; Mar. 14, 2025. [Online]. Available: https://arxiv.org/abs/2502.12480. https://doi.org/10.48550/arXiv.2502.12480.Search in Google Scholar

61. Zhu, X, Kahn, JM. Free-space optical communication through atmospheric turbulence channels. IEEE Trans Commun 2002;50:1293–300. https://doi.org/10.1109/tcomm.2002.800829.Search in Google Scholar

62. Wen, YJ, Nirmalathas, A. Impact of optical pulse shape on the performance of Long-Haul high capacity DWDM systems. Opt Commun 2004;234:217–27. https://doi.org/10.1016/j.optcom.2004.02.038.Search in Google Scholar

Received: 2025-07-13
Accepted: 2025-09-29
Published Online: 2025-10-13

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0283/html
Scroll to top button