Long wavelength fluoride optical glass fibers performance signature in high speed local area data networks
-
Ramachandran Thandaiah Prabu
, Velmurugan Viruthachalam
Abstract
This paper has clarified long wavelength fluoride optical glass fibers performance signature in high speed local area data networks. The signal attenuation and the total fiber pulse broadening are studied versus network length for various fluoride optical glass fibers and AS2 Se3 glass fiber at various spectral wavelengths. The total signal delay time is demonstrated with fiber numerical aperture with 15 km network length for various fluoride optical glass fibers and AS2 Se3 glass fiber at 2.5 μm optimum spectral wavelength. Total fiber signal bandwidth, total Shannon channel bit rate, and NRZ/RZ channel data rate transmission are clarified with 15 km network length for various fluoride optical glass fibers and AS2 Se3 glass fiber at 2.5 μm optimum spectral wavelength.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Research funding: Not applicable.
-
Data availability: Not applicable.
-
Conflict of interest: The authors state no conflict of interest.
References
1. Snyder, AW. Coupled-mode theory for optical fibers. J Opt Soc Am 1972;62:1267–77. https://doi.org/10.1364/josa.62.001267.Search in Google Scholar
2. De Bruyne, S, Speeckaert, MM, Delanghe, JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci 2018;55:1–20. https://doi.org/10.1080/10408363.2017.1414142.Search in Google Scholar PubMed
3. Seddon, AB. Mid-infrared (IR)–A hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B 2013;250:1020–7. https://doi.org/10.1002/pssb.201248524.Search in Google Scholar
4. Gopalan, A, Thillaigovindan, A, Mohan Patnala, P, Mary Lesley, H, Sundaram, M, Srinivasan, V, et al.. High speed operation efficiency of doped light sources with the silica-doped fiber channel for extended optical fiber system reach. J Opt Commun 2024;45:1–14. https://doi.org/10.1515/joc-2024-0130.Search in Google Scholar
5. Pleitez, MA, Khan, AA, Soldà, A, Chmyrov, A, Reber, J, Gasparin, F, et al.. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat Biotechnol 2020;38:293–6. https://doi.org/10.1038/s41587-019-0359-9.Search in Google Scholar PubMed
6. Türker-Kaya, S, Huck, CW. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 2017;22:168–77. https://doi.org/10.3390/molecules22010168.Search in Google Scholar PubMed PubMed Central
7. Gong, Y, Bu, L, Yang, B, Mustafa, F. High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection. Sensors 2020;20:2211. https://doi.org/10.3390/s20082211.Search in Google Scholar PubMed PubMed Central
8. Tugendhaft, I, Bornstein, A, Weissman, Y, Hardy, AA. Directional multimode fiber couplers in the mid-infrared. Opt Eng 1995;34:2846–9. https://doi.org/10.1117/12.210769.Search in Google Scholar
9. Schaafsma, D, Moon, J, Sanghera, J, Aggarwal, I. Fused taper infrared optical fiber couplers in chalcogenide glass. J Lightwave Technol 1997;15:2242–5. https://doi.org/10.1109/50.643548.Search in Google Scholar
10. Athanasiou, GS, Bereś-Pawlik, E, Semczuk, G, Furniss, D, Seddon, AB, Benson, TM. Large core, multimode, chalcogenide glass fibre coupler by side-polishing. Opt Quant Electron 2013;45:961–7. https://doi.org/10.1007/s11082-013-9704-2.Search in Google Scholar
11. Tavakoli, F, Rekik, A, Rochette, M. Broadband and wavelength-dependent chalcogenide optical fiber couplers. IEEE Photonics Technol Lett 2017;29:735–8. https://doi.org/10.1109/lpt.2017.2682821.Search in Google Scholar
12. Benderov, O, Nechepurenko, I, Stepanov, B, Tebeneva, T, Kotereva, T, Snopatin, G, et al.. Broadband mid-IR chalcogenide fiber couplers. Appl Opt 2019;58:7222–6. https://doi.org/10.1364/ao.58.007222.Search in Google Scholar
13. Li, L, Al-Kadry, A, Abdukerim, N, Rochette, M. Design, fabrication and characterization of PC, COP and PMMA-cladded As2Se3 microwires. Opt Mater Express 2016;6:912–21. https://doi.org/10.1364/ome.6.000912.Search in Google Scholar
14. Rezaei, M, Shamim, MHM, El Amraoui, M, Messaddeq, Y, Rochette, M. Nonlinear chalcogenide optical fiber couplers. Opt Express 2022;30:20288–97. https://doi.org/10.1364/oe.458767.Search in Google Scholar PubMed
15. Ramkumar, G, Rajasekaran, V, Sivaraman, D, Arumugam, S, Dwaraka Praveena, H, Prathima, S, et al.. Comparative analysis of high index core micro structured optical fibers (HIMSOF) and hollow core band gap fibers (HCBGF) performance efficiency in fiber communication system. J Opt Commun 2024;45:102–15. https://doi.org/10.1515/joc-2024-0085.Search in Google Scholar
16. Baker, C, Rochette, M. A generalized heat-brush approach for precise control of the waist profile in fiber tapers. Opt Mater Express 2011;1:1065–76. https://doi.org/10.1364/ome.1.001065.Search in Google Scholar
17. Rezaei, M, Rochette, M. All-chalcogenide ring fiber laser. Opt Fiber Technol 2022;71:102–907. https://doi.org/10.1016/j.yofte.2022.102900.Search in Google Scholar
18. Baker, C, Rochette, M. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt Express 2010;18:12391–8. https://doi.org/10.1364/oe.18.012391.Search in Google Scholar
19. Moore, L, MacFarlane, D, Newman, P. Surface crystallization of ZBLAN glasses. J Non-Cryst Solids 1992;140:159–65. https://doi.org/10.1016/s0022-3093(05)80761-6.Search in Google Scholar
20. Torres, A, Barr, R. A quantitative characterization of micro-gravity and unit-gravity processed ZBLAN glass. Mater Char 2015;107:386–97. https://doi.org/10.1016/j.matchar.2015.08.004.Search in Google Scholar
21. Torres, A, Ganley, J, Maji, A. Experimental and analytical techniques for studying ZBLAN crystallization in microgravity. Exp Tech 2016;40:501–12. https://doi.org/10.1007/s40799-016-0052-6.Search in Google Scholar
22. Xia, C, Xu, Z, Islam, MN, Terry, FL, Freeman, MJ, Zakel, A, et al.. 10.5 W time-averaged power Mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation. IEEE J Sel Top Quant Electron 2009;15:422–34. https://doi.org/10.1109/jstqe.2008.2010233.Search in Google Scholar
23. Sanghera, J, Aggarwal, I. Active and passive chalcogenide glass optical fibers for ir applications: a review. J Non-Cryst Solids 1999;256-257:6–16. https://doi.org/10.1016/s0022-3093(99)00484-6.Search in Google Scholar
24. Matusita, K, Koide, M, Komatsu, T. Viscous flow mechanism of fluoride glasses over a wide temperature range. J Non-Cryst Solids 1992;140:141–5. https://doi.org/10.1016/s0022-3093(05)80757-4.Search in Google Scholar
25. Ducharme, É, Virally, S, Becerra-Deana, RI, Boudoux, C, Godbout, N. Viscosity of fluoride glass fibers for fused component fabrication. Appl Opt 2022;61:5031–9. https://doi.org/10.1364/ao.455528.Search in Google Scholar
26. Annunziato, A, Anelli, F, Du Teilleul, PLP, Cozic, S, Poulain, S, Prudenzano, F. Fused optical fiber combiner based on indium fluoride glass: perspectives for mid-IR applications. Opt Express 2022;30:44160–74. https://doi.org/10.1364/oe.471090.Search in Google Scholar PubMed
27. Love, J, Henry, W. Quantifying loss minimisation in single-mode fibre tapers. Electron Lett 1986;22:912–14. https://doi.org/10.1049/el:19860622.10.1049/el:19860622Search in Google Scholar
28. da Silva Andrade, D, da Silva Rego, JH, Morais, PC, Rojas, MF. Chemical and mechanical characterization of ternary cement pastes containing metakaolin and nanosilica. Construct Build Mater 2018;159:18–26.10.1016/j.conbuildmat.2017.10.123Search in Google Scholar
29. Gopalan, A, Arulmozhi, AK, Pandian, MM, Mohanadoss, P, Dorairajan, N, Balaji, M, et al.. Performance parameters estimation of high speed Silicon/Germanium/InGaAsP avalanche photodiodes wide bandwidth capability in ultra high speed optical communication system. J Opt Commun 2024;45:33–45. https://doi.org/10.1515/joc-2024-0099.Search in Google Scholar
30. Ramkumar, G, Shahila, FD, Lingaraj, V, Chandran, P, Chidambaram, V, Arumugam, P, et al.. Total losses and dispersion effects management and upgrading fiber reach in ultra-high optical transmission system based on hybrid amplification system. Journal Opt Commun 2024;45:133–46. https://doi.org/10.1515/joc-2024-0074.Search in Google Scholar
31. Rezaei, M, Rochette, M. All-chalcogenide single-mode optical fiber couplers. Opt Lett 2019;44:5266–9. https://doi.org/10.1364/ol.44.005266.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston