Home Design and simulation of an all optical 8 to 3 binary encoder based on optimized photonic crystal OR gates
Article
Licensed
Unlicensed Requires Authentication

Design and simulation of an all optical 8 to 3 binary encoder based on optimized photonic crystal OR gates

  • S. Naghizade EMAIL logo , S. Mohammadi and H. Khoshsima
Published/Copyright: April 6, 2018
Become an author with De Gruyter Brill

Abstract

The most recently developed optical encoders are based on non-linear Kerr effect which require high input power. Here, we report 8 to 3 optical binary encoder based on linear effects which greatly reduces the input power requirement. The proposed encoder consists of three optical 4-input port OR gates and an optical buffer gate. Simulation results have proved correct operation states of the encoder and numerical analysis is done in order to additional evaluation. The maximum switching delay and total footprint of proposed structure are about 160 fs and 1418 µm2, respectively.

References

1. Mukhopadhyay S. An optical conversion system: from binary to decimal and decimal to binary. Opt Commun. 1990;76:309–12.10.1016/0030-4018(90)90257-TSearch in Google Scholar

2. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58:2486–89.10.1103/PhysRevLett.58.2486Search in Google Scholar PubMed

3. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys RevLett. 1987;58:2059–62.10.1007/978-1-4615-1963-8_41Search in Google Scholar

4. Hassangholizadeh-Kashtiban M, Sabbaghi-Nadooshan R, Alipour-Banaei H. A novel all optical reversible 4 to 2 encoder based on photonic crystals, . Opt Int J Light Electron Opt. 2015;126:2368–72.10.1016/j.ijleo.2015.05.140Search in Google Scholar

5. Liu V, Miller DAB, Fan. S. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt Express. 2012;20:28388.10.1364/OE.20.028388Search in Google Scholar PubMed

6. Fasihi K. All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Opt Int J Light Electron Opt. 2014;125:6520–23.10.1016/j.ijleo.2014.08.030Search in Google Scholar

7. Mehdizadeh F, Soroosh M, Alipour-Banaei H, Farshidi E. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl Opt. 2017;56:1799–806.10.1364/AO.56.001799Search in Google Scholar PubMed

8. Miao B, Chen C, Sharkway A, Shi S, Prather DW. Two bit optical analog-to-digital converter based on photonic crystals, . Opt Express. 2006;14:7966.10.1364/OE.14.007966Search in Google Scholar

9. Youssefi B, Moravvej-Farshi MK, Granpayeh N. Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals, . Opt Commun. 2012;285:3228–33.10.1016/j.optcom.2012.02.081Search in Google Scholar

10. Joannopoulos JD, Meade RD, Winn JN. Photonic crystals molding the flow of light. Princeton: Princeton University Press; 1995.Search in Google Scholar

11. Yablonovitch E. Photonic crystals: semiconductors of light. Sci Am. 2001 Dec;285:46e55.10.1038/scientificamerican1201-46Search in Google Scholar

12. Pirzadi M, Mir A, Bodaghi D. Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photon Technol Lett. 2016;28:2387–90.10.1109/LPT.2016.2596580Search in Google Scholar

13. Alipour-Banaei H, Jahanara M, Mehdizadeh F. T-shaped channel drop filter based on photonic crystal ring resonator, . Opik. 2014;125:5348–51.10.1016/j.ijleo.2014.06.056Search in Google Scholar

14. Naghizade S, Sattari-Esfahlan SM. Excellent quality factor ultra-compact optical communication filter on ring-shaped cavity. J Opt Commun. 2017. DOI:10.1515/joc-2017-0035Search in Google Scholar

15. Wang Y, Chen D, Zhang G, Wang J, Tao S. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors, . Opt Commun. 2016;363:13–20.10.1016/j.optcom.2015.10.070Search in Google Scholar

16. Naghizade S, Sattari-Esfahlan SM. Loss-less elliptical channel drop filter for WDM applications. J Opt Commun. 2017. DOI:10.1515/joc-2017-0088Search in Google Scholar

17. Mansouri-Birjandi MA, Tavousi A, Ghadrdan M. Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators, ”. Photon Nanost Fundam Appl. 2016;21:44–51.10.1016/j.photonics.2016.06.002Search in Google Scholar

18. Zavvari M, Mehdizadeh F. Photonic crystal cavity with L3-Defect for resonantoptical filtering, . Frequenz. 2014;68:519–23.10.1515/freq-2014-0069Search in Google Scholar

19. Zamani M. Photonic crystal-based optical filters for operating insecond and third optical fiber windows. Superlattices Microstruct. 2016;92:157–65.10.1016/j.spmi.2016.02.025Search in Google Scholar

20. Djavid M, Abrishamian MS. Multi-channel drop filters using photonic crystal ring resonators. Opt Int J Light Electron Opt. 2012;123:167–70.10.1016/j.ijleo.2011.04.001Search in Google Scholar

21. Sattari-Esfahlan SM, Shojaei S. Low-bias flat band-stop filter based on velocity modulated Gaussian graphene superlattice. Solid State Commun. 2018;273:66–72.10.1016/j.ssc.2017.08.005Search in Google Scholar

22. Marpaung D, Morrison B, Pagani M, Pant R, Choi D-Y, Luther-Davies B, et al.. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica. 2015;2:76–83.10.1364/OPTICA.2.000076Search in Google Scholar

23. Mehdizadeh F, Soroosh M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, . Photonic Netw Commun. 2016;31:65–70.10.1007/s11107-015-0531-1Search in Google Scholar

24. Bazargani HP. Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt Commun. 2012;285:1848–53.10.1016/j.optcom.2011.12.002Search in Google Scholar

25. Naghizade S, Sattari-Esfahlan SM. High-performance ultra-compact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw Commun. 2017. DOI:10.1007/s11107-017-0702-3Search in Google Scholar

26. Rakhshani MR, Mansouri-Birjandi MA. Design and simulation of four-channel wavelength demultiplexer based on photonic crystal circular ring resonators for optical communications. J Opt Commun. 2014;35:9–15.10.1515/joc-2013-0022Search in Google Scholar

27. Naghizade S, Sattari-Esfahlan SM. Tunable high performance 16-channel demultiplexer on 2D photonic crystal ring resonator operating at telecom wavelength. J Opt Commun. 2018. DOI:10.1515/joc-2017-0199Search in Google Scholar

28. Jiu-Sheng L, Han L, Le Z. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt Commun. 2015;350:248–51.10.1016/j.optcom.2015.04.034Search in Google Scholar

29. Naghizade S, Sattari-Esfahlan SM. An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 2018. DOI:10.1515/joc-2017-0129Search in Google Scholar

30. Naghizade S, Sattari-Esfahlan SM. Optimal 16-channel demultiplexer based on embedded silicon rods in circular carbon ring substance for dense optical interconnects. J Opt Commun. 2018. DOI:10.1515/joc-2017-0199Search in Google Scholar

31. Mehdizadeh F, Soroosh M, Alipour-Banaei H. An optical demultiplexer based on photonic crystal ring resonators, . Opik. 2016;127:8706–09.10.1016/j.ijleo.2016.06.086Search in Google Scholar

32. Mehdizadeh F, Alipour-Banaei H, Serajmohammadi S. Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J Mod Opt. 2017;0340:1233–39.10.1080/09500340.2016.1275854Search in Google Scholar

33. Teo HG, Liu AQ, Singh J, Yu MB, Bourouina T. Design and simulation of MEMS optical switch using photonic bandgap crystal. Microsyst Technol. 2004;10:400–40.10.1007/s00542-004-0416-1Search in Google Scholar

34. Serajmohammadi S, Alipour-Banaei H, Mehdizadeh F. All optical decoder switch based on photonic crystal ring resonators. Opt Quantum Electron. 2014;47:1109–15.10.1007/s11082-014-9967-2Search in Google Scholar

35. Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S, Hassangholizadeh-Kashtiban M. A 2*4 all optical decoder switch based on photonic crystal ring resonators, . J Mod Opt. 2014;62:430–34.10.1080/09500340.2014.957743Search in Google Scholar

36. Chen Z, Li Z, Li B. A 2-to-4 decoder switch in SiGe/Si multimode inteference, . Opt Express. 2006;14:2671.10.1364/OE.14.002671Search in Google Scholar

37. Liu W, Yang D, Shen G, Tian H, Ji Y. Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides, . Opt Laser Technol. 2013;50:55–64.10.1016/j.optlastec.2012.12.030Search in Google Scholar

38. Haq Shaik E, Rangaswamy N. Design of photonic crystal-based all-optical AND gate using T-shaped waveguide. J Mod Opt. 2015;63:1–9.10.1080/09500340.2015.1111455Search in Google Scholar

39. Yang Y-P, Lin K-C, Yang I-C, Lee K-Y, Lin Y-J, Lee W-Y, et al. All-optical photonic crystal AND gate with multiple operating wavelengths. Opt Commun. 2013;297:165–68.10.1016/j.optcom.2013.01.035Search in Google Scholar

40. Goudarzi K, Mir A, Chaharmahali I, Goudarzi D. All- opticalXOR and OR logic gates based on line and point defects in 2Dphotonic crystal. Opt Laser Technol. 2016;78:139–42.10.1016/j.optlastec.2015.10.013Search in Google Scholar

41. Yang Y-P, Lin K-C, Yang I-C, Lee K-Y, Lee W-Y, Tsai Y-T. All-optical photonic crystal encoder capable of operating at multiple wavelengths, ”. Opik. 2017;142:354–59.10.1016/j.ijleo.2017.05.067Search in Google Scholar

42. Gholamnejad S, Zavvari M. Design and analysis of all-optical 4–2 binary encoderbased on photonic crystal, . Opt Quantum Electron. 2017;42:302.10.1007/s11082-017-1144-ySearch in Google Scholar

43. Moniem TA. All optical active high decoder using integrated 2D square lattice photonic crystals. J Mod Opt. 2015;62:1643–49.10.1080/09500340.2015.1061061Search in Google Scholar

44. Ouahab I, Rafah N. A novel all optical 4×2 encoder switch based on photonic crystal ring resonators. Opt Int J Light Elec- Tron Opt. 2016;127:7835–41.10.1016/j.ijleo.2016.05.080Search in Google Scholar

45. Mehdizadeh F, Soroosh M, Alipour-Banaei H. Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 2017;11:29–35.10.1049/iet-opt.2016.0022Search in Google Scholar

46. Hun Kim J, Tae Byun Y, Min Jhon Y, Lee S, Ha Woo D, Ho Kim S. All-optical half adder using semiconductor optical amplifier based devices, . Opt Commun. 2003;218:345–49.10.1016/S0030-4018(03)01203-3Search in Google Scholar

47. Karkhanehchi MM, Parandin F, Zahedi A. Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw Commun. 2017;33:159–65.10.1007/s11107-016-0629-0Search in Google Scholar

48. Jiang Y-C, Liu S-B, Zhang H-F, Kong X-K. Realization of all optical half-adder based on self-collimated beams by two- dimensional photonic crystals, . Opt Commun. 2015;348:90–94.10.1016/j.optcom.2015.03.011Search in Google Scholar

49. Parandina F, Malmira MR, Naserib M. All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlat Microst. 2017;109:437–41.10.1016/j.spmi.2017.05.030Search in Google Scholar

50. Moniem TA. All-optical digital 4×2 encoder based on 2D photonic crystal ring resonator, . J Mod Opt. 2015;735–41. DOI:10.1080/09500340.2015.1094580Search in Google Scholar

51. Salimzadeh A, Alipour-Banaei H. An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt Commun. 2018;410:793–98.10.1016/j.optcom.2017.11.036Search in Google Scholar

52. Alipour-Banaei H, Rabati MG, Abdollahzadeh-Badelbou P, Mehdizadeh F. Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys E Low Dimens Syst Nanostruct. 2016;75:77–85.10.1016/j.physe.2015.08.011Search in Google Scholar

53. Johnson SG, Joannopoulos JD. Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt Express. 2001;8:173–90.10.1364/OE.8.000173Search in Google Scholar

54. Gedney SD. Introduction to Finite-Difference Time-Domain (FDTD) method for electromagnetics. Lexington KY: Morgan&Claypool, 2010. DOI:10.2200/S00316ED1V01Y201012CEM027.Search in Google Scholar

Received: 2018-03-03
Accepted: 2018-03-22
Published Online: 2018-04-06
Published in Print: 2021-01-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Experimental, Characterization and Optimization of the Pumping Power of an EDFA by a QPDSF Configuration
  4. Study of Chaos Control of a Dual-Ring Erbium-Doped Fiber Laser Using Parameter Method
  5. Devices
  6. Low Input Power an All Optical 4 × 2 Encoder based on Triangular Lattice Shape Photonic Crystal
  7. Effect of Multiwalled Carbon Nanotube Reinforcement on the Opto-Electronic Properties of Polyaniline/c-Si Heterojunction
  8. Design and simulation of an all optical 8 to 3 binary encoder based on optimized photonic crystal OR gates
  9. Investigation of 2D-PC Ring Resonator-Based Demultiplexer for ITU-T G.694.1 WDM Systems
  10. Concave Rectangle Photonic Crystal Ring Resonator for Ultra-Fast All-Optical Modulation
  11. Soliton Pulse Generation for WDM-Based Free Space Optics Communication Using Microring Resonators
  12. Fibers
  13. Theory of Dispersion Reduction in Plastic Optical Gratings Fiber
  14. Efficient Routing Strategies of N × N RM-OXC Using C Band Based on T-FBG and OC
  15. Backbone Optical Fiber Analysis at 1310 nm and 1550 nm
  16. Networks
  17. Investigation of Blocking Performance in GMPLS Networks
  18. Identification of a Malicious Optical Edge Device in the SDN-Based Optical Fog/Cloud Computing Network
  19. Receiver
  20. New Structure of CCR with an AOANN Threshold
  21. Performance Enhancement of HAP-Based Relaying M-PPM FSO System Using Spatial Diversity and Heterodyne Detection Receiver
  22. Systems
  23. Review of LiFi Technology and Its Future Applications
  24. The Improved Optical Heterodyne Scheme for RoF Systems Based on Optical Carrier Suppression and Optical Injection Locking Techniques
  25. Effect of External Perturbation and System Parameters on Optical Secure Communication Models
  26. Development and Performance Improvement of a New Two-Dimensional Spectral/Spatial Code Using the Pascal Triangle Rule for OCDMA System
  27. Theory
  28. A Heavy Load Optimized Dynamic Bandwidth Allocation Algorithm for Hybrid WDM/TDM VPONs
  29. Effects of Sandstorms on Vehicular-to-Road Visible-Light Communication
  30. Estimation of Signal-to-Cross Talk Ratio of Stimulated-Raman-Scattering-Induced Cross Talk in Wavelength-Division-Multiplexing-Based Radio-over-Fiber Links
  31. Intelligent Requests Algorithm Based Scheduling and Efficient Dynamic Bandwidth Allocation to Improve QoS for EPONs
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2018-0034/html
Scroll to top button