Abstract
Employing the simple series expression based on Chebyshev technique, we predict the fundamental modal field inside the core as well as cladding in case of dispersion-shifted trapezoidal and dispersion-flattened graded and step W fibers. This formalism also estimates cladding decay parameters (W) of the said fibers. The analysis involves use of a linear relationship of the ratio of first and zero order modified Bessel functions in the form
with 1/W over a wide and practical range of W values appropriate for guidance of only fundamental mode in such fibers. The present method prescribes analytical expressions for the concerned propagation characteristics and these are executable with little computations. Our results are found to match excellently with the available exact results.
©[2012] by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Performance of Fiber Raman Amplifier due to Change in Refractive Index of Second Core of Dual Core Fiber Raman Amplifier
- Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
- Simple Method for Study of Single-mode Dispersion-shifted and Dispersion-flattened Fibers
- Spectroscopic Properties of Tm3+/Yb3+-Codoped Tellurite Material
- Application of Raman Amplification using a Reflector in Passive Optical Networks
- An Approach of Multiple-Quality Segment Protection Based on p-Cycle for the Optical Multicast
- Performance Evaluation of Hybrid SCM/SAC-OCDMA Transmissions System using Dynamic Cyclic Shift Code
- Secure Optical Communication System Based on Dynamic Strong Dispersion Control
- Phase Noise Influence in Long-range Coherent Optical OFDM Systems with Delay Detection, IFFT Multiplexing and FFT Demodulation
- Impact of Laser Line-width in 40 Gbit/s DWDM Transmission System in the Presence of FWM Incorporating Equal Channel Spacing
- PMD Mitigation by Various Distribution Patterns of Fast Polarization Scramblers with Forward Error Correction
- Effects of Fiber Dispersion on the Performance of Optical CDMA Systems
- Mismatch Consideration in Circular Core Mono-mode Graded Index Fiber of Triangular Refractive Index Profile Excitation via Hemispherical Microlens on the Fiber Tip
- Theoretical Investigation of XPM Induced Crosstalk under the Impact of Higher Order Dispersion (HOD) in SCM-WDM Transmission Link
Articles in the same Issue
- Masthead
- Performance of Fiber Raman Amplifier due to Change in Refractive Index of Second Core of Dual Core Fiber Raman Amplifier
- Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
- Simple Method for Study of Single-mode Dispersion-shifted and Dispersion-flattened Fibers
- Spectroscopic Properties of Tm3+/Yb3+-Codoped Tellurite Material
- Application of Raman Amplification using a Reflector in Passive Optical Networks
- An Approach of Multiple-Quality Segment Protection Based on p-Cycle for the Optical Multicast
- Performance Evaluation of Hybrid SCM/SAC-OCDMA Transmissions System using Dynamic Cyclic Shift Code
- Secure Optical Communication System Based on Dynamic Strong Dispersion Control
- Phase Noise Influence in Long-range Coherent Optical OFDM Systems with Delay Detection, IFFT Multiplexing and FFT Demodulation
- Impact of Laser Line-width in 40 Gbit/s DWDM Transmission System in the Presence of FWM Incorporating Equal Channel Spacing
- PMD Mitigation by Various Distribution Patterns of Fast Polarization Scramblers with Forward Error Correction
- Effects of Fiber Dispersion on the Performance of Optical CDMA Systems
- Mismatch Consideration in Circular Core Mono-mode Graded Index Fiber of Triangular Refractive Index Profile Excitation via Hemispherical Microlens on the Fiber Tip
- Theoretical Investigation of XPM Induced Crosstalk under the Impact of Higher Order Dispersion (HOD) in SCM-WDM Transmission Link