Home Stability and error analysis of a semi-implicit scheme for incompressible flows with variable density and viscosity
Article
Licensed
Unlicensed Requires Authentication

Stability and error analysis of a semi-implicit scheme for incompressible flows with variable density and viscosity

  • An Vu and Loic Cappanera EMAIL logo
Published/Copyright: November 4, 2024

Abstract

We study the stability and convergence properties of a semi-implicit time stepping scheme for the incompressible Navier–Stokes equations with variable density and viscosity. The density is assumed to be approximated in a way that conserves the minimum-maximum principle. The scheme uses a fractional time-stepping method and the momentum, which is equal to the product of the density and velocity, as a primary unknown. The semi-implicit algorithm for the coupled momentum-pressure is shown to be conditionally stable and the velocity is shown to converge in L 2 norm with order one in time. Numerical illustrations confirm that the algorithm is stable and convergent under classic CFL condition even for sharp density profiles.

MSC 2010 Classification: 65M12; 65M60

Corresponding author: Loic Cappanera, Department of Mathematics, University of Houston, Houston, TX, USA, E-mail: 

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was partly supported by the National Science Foundation (NSF) under the award DMS-2209046.

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

[1] C. U. Ikoku and H. J. RameyJr, “Transient flow of non-Newtonian power-law fluids in porous media,” Soc. Pet. Eng. J., vol. 19, no. 03, pp. 164–174, 1979. https://doi.org/10.2118/7139-pa.Search in Google Scholar

[2] U. Christensen, “Convection in a variable-viscosity fluid: Newtonian versus power-law rheology,” Earth Planet. Sci. Lett., vol. 64, no. 1, pp. 153–162, 1983. https://doi.org/10.1016/0012-821x(83)90060-2.Search in Google Scholar

[3] P.-L. Lions, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, vol. 2, Oxford, UK, Oxford University Press, 1996.Search in Google Scholar

[4] R. Danchin, “Density-dependent incompressible fluids in bounded domains,” J. Math. Fluid Mech., vol. 8, no. 3, pp. 333–381, 2006. https://doi.org/10.1007/s00021-004-0147-1.Search in Google Scholar

[5] O. Ladyzhenskaya and V. Solonnikov, “Unique solvability of an initial-and boundary-value problem for viscous incompressible nonhomogeneous fluids,” J. Sov. Math., vol. 9, no. 5, pp. 697–749, 1978. https://doi.org/10.1007/bf01085325.Search in Google Scholar

[6] E. Ortega-Torres, P. Braz e Silva, and M. Rojas-Medar, “Analysis of an iterative method for variable density incompressible fluids,” Ann. Univ. Ferrara, vol. 55, no. 1, pp. 129–151, 2009. https://doi.org/10.1007/s11565-009-0060-x.Search in Google Scholar

[7] V. Badalassi, H. Ceniceros, and S. Banerjee, “Computation of multiphase systems with phase field models,” J. Comput. Phys., vol. 190, no. 2, pp. 371–397, 2003. https://doi.org/10.1016/s0021-9991(03)00280-8.Search in Google Scholar

[8] L. Cappanera, J.-L. Guermond, W. Herreman, and C. Nore, “Momentum-based approximation of incompressible multiphase fluid flows,” Int. J. Numer. Methods Fluids, vol. 86, no. 8, pp. 541–563, 2018. https://doi.org/10.1002/fld.4467.Search in Google Scholar

[9] H. Chen, J. Mao, and J. Shen, “Error estimate of Gauge–Uzawa methods for incompressible flows with variable density,” J. Comput. Appl. Math., vol. 364, Art. no. 112321, 2020. https://doi.org/10.1016/j.cam.2019.06.037.Search in Google Scholar

[10] S. Dong and J. Shen, “A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios,” J. Comput. Phys., vol. 231, no. 17, pp. 5788–5804, 2012. https://doi.org/10.1016/j.jcp.2012.04.041.Search in Google Scholar

[11] J.-L. Guermond and A. Salgado, “A splitting method for incompressible flows with variable density based on a pressure Poisson equation,” J. Comput. Phys., vol. 228, no. 8, pp. 2834–2846, 2009. https://doi.org/10.1016/j.jcp.2008.12.036.Search in Google Scholar

[12] J.-H. Pyo and J. Shen, “Gauge–Uzawa methods for incompressible flows with variable density,” J. Comput. Phys., vol. 221, no. 1, pp. 181–197, 2007. https://doi.org/10.1016/j.jcp.2006.06.013.Search in Google Scholar

[13] J. Wu, J. Shen, and X. Feng, “Unconditionally stable Gauge–Uzawa finite element schemes for incompressible natural convection problems with variable density,” J. Comput. Phys., vol. 348, pp. 776–789, 2017. https://doi.org/10.1016/j.jcp.2017.07.045.Search in Google Scholar

[14] L. Lundgren and M. Nazarov, “A high-order artificial compressibility method based on taylor series time-stepping for variable density flow,” J. Comput. Appl. Math., vol. 421, Art. no. 114846, 2023. https://doi.org/10.1016/j.cam.2022.114846.Search in Google Scholar

[15] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems,” J. Comput. Phys., vol. 2, no. 1, pp. 12–26, 1967. https://doi.org/10.1016/0021-9991(67)90037-x.Search in Google Scholar

[16] A. J. Chorin, “Numerical solution of the Navier–Stokes equations,” Math. Comput., vol. 22, no. 104, pp. 745–762, 1968. https://doi.org/10.1090/s0025-5718-1968-0242392-2.Search in Google Scholar

[17] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, vol. 2, New York, Gordon & Breach, 1969.Search in Google Scholar

[18] R. Temam, “Une méthode d’approximation de la solution des équations de Navier–Stokes,” Bull. Soc. Math. Fr., vol. 96, pp. 115–152, 1968. https://doi.org/10.24033/bsmf.1662.Search in Google Scholar

[19] R. Temam, “Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (ii),” Arch. Ration. Mech. Anal., vol. 33, pp. 377–385, 1969. https://doi.org/10.1007/bf00247696.Search in Google Scholar

[20] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, “A front-tracking method for the computations of multiphase flow,” J. Comput. Phys., vol. 169, no. 2, pp. 708–759, 2001. https://doi.org/10.1006/jcph.2001.6726.Search in Google Scholar

[21] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, “Diffuse-interface methods in fluid mechanics,” Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 139–165, 1998. https://doi.org/10.1146/annurev.fluid.30.1.139.Search in Google Scholar

[22] P.-H. Chiu and Y.-T. Lin, “A conservative phase field method for solving incompressible two-phase flows,” J. Comput. Phys., vol. 230, no. 1, pp. 185–204, 2011. https://doi.org/10.1016/j.jcp.2010.09.021.Search in Google Scholar

[23] C. Liu and J. Shen, “A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method,” Phys. D, vol. 179, nos. 3–4, pp. 211–228, 2003. https://doi.org/10.1016/s0167-2789(03)00030-7.Search in Google Scholar

[24] S. Osher, “A level set formulation for the solution of the dirichlet problem for Hamilton–Jacobi equations,” SIAM J. Math. Anal., vol. 24, no. 5, pp. 1145–1152, 1993. https://doi.org/10.1137/0524066.Search in Google Scholar

[25] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. https://doi.org/10.1016/0021-9991(88)90002-2.Search in Google Scholar

[26] J.-L. Guermond, P. Minev, and J. Shen, “An overview of projection methods for incompressible flows,” Comput. Methods Appl. Mech. Eng., vol. 195, nos. 44–47, pp. 6011–6045, 2006. https://doi.org/10.1016/j.cma.2005.10.010.Search in Google Scholar

[27] J.-L. Guermond and A. J. Salgado, “Error analysis of a fractional time-stepping technique for incompressible flows with variable density,” SIAM J. Numer. Anal., vol. 49, no. 3, pp. 917–944, 2011. https://doi.org/10.1137/090768758.Search in Google Scholar

[28] W. Cai, B. Li, and Y. Li, “Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions,” ESAIM: Math. Modell. Numer. Anal., vol. 55, pp. S103–S147, 2021. https://doi.org/10.1051/m2an/2020029.Search in Google Scholar

[29] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26, Philadelphia, PA, USA, Siam, 1977.10.1137/1.9781611970425Search in Google Scholar

[30] W. Herreman, C. Nore, J.-L. Guermond, L. Cappanera, N. Weber, and G. Horstmann, “Perturbation theory for metal pad roll instability in cylindrical reduction cells,” J. Fluid Mech., vol. 878, pp. 598–646, 2019. https://doi.org/10.1017/jfm.2019.642.Search in Google Scholar

[31] W. Herreman, C. Nore, P. Z. Ramos, L. Cappanera, J.-L. Guermond, and N. Weber, “Numerical simulation of electrovortex flows in cylindrical fluid layers and liquid metal batteries,” Phys. Rev. Fluids, vol. 4, no. 11, Art. no. 113702, 2019. https://doi.org/10.1103/physrevfluids.4.113702.Search in Google Scholar

[32] J. P. Boris and D. L. Book, “Flux-corrected transport, I. SHASTA, a fluid transport algorithm that works,” J. Comput. Phys., vol. 11, no. 1, pp. 38–69, 1973. https://doi.org/10.1016/0021-9991(73)90147-2.Search in Google Scholar

[33] J.-L. Guermond, M. Q. de Luna, and T. Thompson, “An conservative anti-diffusion technique for the level set method,” J. Comput. Appl. Math., vol. 321, pp. 448–468, 2017. https://doi.org/10.1016/j.cam.2017.02.016.Search in Google Scholar

[34] D. Kuzmin, R. Löhner, and S. Turek, Flux-corrected Transport: Principles, Algorithms, and Applications, Dordrecht, Springer, 2012.10.1007/978-94-007-4038-9Search in Google Scholar

[35] S. T. Zalesak, “Fully multidimensional flux-corrected transport algorithms for fluids,” J. Comput. Phys., vol. 31, no. 3, pp. 335–362, 1979. https://doi.org/10.1016/0021-9991(79)90051-2.Search in Google Scholar

[36] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, “The development of discontinuous Galerkin methods,” in Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, 2000, pp. 3–50.10.1007/978-3-642-59721-3_1Search in Google Scholar

[37] J. Jaffre, C. Johnson, and A. Szepessy, “Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws,” Math. Models Methods Appl. Sci., vol. 5, no. 03, pp. 367–386, 1995. https://doi.org/10.1142/s021820259500022x.Search in Google Scholar

[38] N. J. Walkington, “Convergence of the discontinuous Galerkin method for discontinuous solutions,” SIAM J. Numer. Anal., vol. 42, no. 5, pp. 1801–1817, 2005. https://doi.org/10.1137/s0036142902412233.Search in Google Scholar

[39] J.-L. Guermond and R. Pasquetti, “Entropy-based nonlinear viscosity for fourier approximations of conservation laws,” C. R. Math., vol. 346, nos. 13–14, pp. 801–806, 2008. https://doi.org/10.1016/j.crma.2008.05.013.Search in Google Scholar

[40] F. Hecht, “New development in FreeFEM++,” J. Numer. Math., vol. 20, nos. 3–4, pp. 251–266, 2012. https://doi.org/10.1515/jnum-2012-0013.Search in Google Scholar

[41] M. Nazarov and J. Hoffman, “Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods,” Int. J. Numer. Methods Fluids, vol. 71, no. 3, pp. 339–357, 2013. https://doi.org/10.1002/fld.3663.Search in Google Scholar

[42] V. Stiernström, L. Lundgren, M. Nazarov, and K. Mattsson, “A residual-based artificial viscosity finite difference method for scalar conservation laws,” J. Comput. Phys., vol. 430, Art. no. 110100, 2021. https://doi.org/10.1016/j.jcp.2020.110100.Search in Google Scholar

[43] T. Coupez, “Convection of local level set function for moving surfaces and interfaces in forming flow,” in AIP Conference Proceedings, vol. 908, American Institute of Physics, 2007, pp. 61–66.10.1063/1.2740790Search in Google Scholar

[44] E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys., vol. 210, no. 1, pp. 225–246, 2005. https://doi.org/10.1016/j.jcp.2005.04.007.Search in Google Scholar

[45] L. Ville, L. Silva, and T. Coupez, “Convected level set method for the numerical simulation of fluid buckling,” Int. J. Numer. Methods Fluids, vol. 66, no. 3, pp. 324–344, 2011. https://doi.org/10.1002/fld.2259.Search in Google Scholar

[46] M. Li, Y. Cheng, J. Shen, and X. Zhang, “A bound-preserving high order scheme for variable density incompressible Navier–Stokes equations,” J. Comput. Phys., vol. 425, Art. no. 109906, 2021. https://doi.org/10.1016/j.jcp.2020.109906.Search in Google Scholar

[47] J.-L. Guermond, J. Léorat, F. Luddens, C. Nore, and A. Ribeiro, “Effects of discontinuous magnetic permeability on magnetodynamic problems,” J. Comput. Phys., vol. 230, no. 16, pp. 6299–6319, 2011. https://doi.org/10.1016/j.jcp.2011.04.026.Search in Google Scholar

Received: 2024-02-21
Accepted: 2024-08-27
Published Online: 2024-11-04
Published in Print: 2025-06-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnma-2024-0033/html
Scroll to top button