Home Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem
Article
Licensed
Unlicensed Requires Authentication

Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem

  • Alex Kaltenbach EMAIL logo
Published/Copyright: August 21, 2023

Abstract

In the present paper, we examine a Crouzeix–Raviart approximation for non-linear partial differential equations having a (p, δ)-structure for some p ∈ (1, ∞) and δ ⩾ 0. We establish a priori error estimates, which are optimal for all p ∈ (1, ∞) and δ ⩾ 0, medius error estimates, i.e., best-approximation results, and a primal–dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.

MSC 2010: 49M29; 65N15; 65N50

Acknowledgment

The author is grateful for the stimulating discussions with S. Bartels.

References

[1] E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2, J. Math. Anal. Appl. 140 (1989), No. 1, 115–135.10.1016/0022-247X(89)90098-XSearch in Google Scholar

[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (2001), No. 1, 15–41.10.1137/S0895479899358194Search in Google Scholar

[3] S. Balay, S. Abhyankar, M. F. Adams, F. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web page, https://www.mcs.anl.gov/petsc, 2019.Search in Google Scholar

[4] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comp. 61 (1993), No. 204, 523–537.10.1090/S0025-5718-1993-1192966-4Search in Google Scholar

[5] J. W. Barrett and W. B. Liu, Finite element approximation of degenerate quasilinear elliptic and parabolic problems, Numerical Analysis 1993 (Dundee, 1993), Pitman Res. Notes Math. Ser. 303, Longman Sci. Tech., Harlow, 1994, pp. 1–16.Search in Google Scholar

[6] J. W. Barrett and W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68 (1994), No. 4, 437–456.10.1007/s002110050071Search in Google Scholar

[7] S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods, Comput. Math. Appl. 93 (2021), 214–229.10.1016/j.camwa.2021.04.014Search in Google Scholar

[8] S. Bartels and A. Kaltenbach, Error analysis for a Crouzeix–Raviart approximation of the obstacle problem, arXiv:2302.01646, 2023.10.1515/jnma-2022-0106Search in Google Scholar

[9] S. Bartels and A. Kaltenbach, Explicit and efficient error estimation for convex minimization problems, Math. Comp. 92 (2023), No. 343, 2247–2279.10.1090/mcom/3821Search in Google Scholar

[10] S. Bartels and M. Milicevic, Primal–dual gap estimators for a posteriori error analysis of nonsmooth minimization problems, ESAIM Math. Model. Numer. Anal. 54 (2020), No. 5, 1635–1660.10.1051/m2an/2019074Search in Google Scholar

[11] L. Belenki, L. Diening, and C. Kreuzer, Optimality of an adaptive finite element method for the p-Laplacian equation, IMA J. Numer. Anal. 32 (2012), No. 2, 484–510.10.1093/imanum/drr016Search in Google Scholar

[12] L. Berselli, L. Diening, and M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities, Journal of Mathematical Fluid Mechanics 12 (2010), 101–132.10.1007/s00021-008-0277-ySearch in Google Scholar

[13] L. C. Berselli and M. Růžička, Global regularity for systems with p-structure depending on the symmetric gradient, Adv. Nonlinear Anal. 9 (2020), No. 1, 176–192.10.1515/anona-2018-0090Search in Google Scholar

[14] S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Mathematics of Computation 65 (1996), No. 215, 897–921.10.1090/S0025-5718-96-00746-6Search in Google Scholar

[15] S. C. Brenner, Forty years of the Crouzeix–Raviart element, Numer. Methods Partial Differential Equations 31 (2015), No. 2, 367–396.10.1002/num.21892Search in Google Scholar

[16] C. Carstensen, An adaptive mesh-refining algorithm allowing for an H1 stable L2 projection onto Courant finite element spaces, Constr. Approx. 20 (2004), No. 4, 549–564.10.1007/s00365-003-0550-5Search in Google Scholar

[17] C. Carstensen, W. Liu, and N. Yan, A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm, Math. Comp. 75 (2006), No. 256, 1599–1616.10.1090/S0025-5718-06-01819-9Search in Google Scholar

[18] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002.10.1137/1.9780898719208Search in Google Scholar

[19] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), No. R-3, 33–75.10.1051/m2an/197307R300331Search in Google Scholar

[20] B. Dacorogna, Direct Methods in the Calculus of Variations, 2-nd ed., Applied Mathematical Sciences 78, Springer, New York, 2008.Search in Google Scholar

[21] L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. 20 (2008), No. 3, 523–556.10.1515/FORUM.2008.027Search in Google Scholar

[22] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), No. 2, 614–638.10.1137/070681508Search in Google Scholar

[23] L. Diening, D. Kröner, M. Růžička, and I. Toulopoulos, A local discontinuous Galerkin approximation for systems with p-structure, IMA J. Num. Anal. 34 (2014), No. 4, 1447–1488.10.1093/imanum/drt040Search in Google Scholar

[24] L. Diening and M. Růžička, Interpolation operators in Orlicz–Sobolev spaces, Numer. Math. 107 (2007), No. 1, 107–129.10.1007/s00211-007-0079-9Search in Google Scholar

[25] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), No. 3, 1106–1124.10.1137/0733054Search in Google Scholar

[26] C. Ebmeyer, Global regularity in Nikolskij spaces for elliptic equations with p-structure on polyhedral domains, Nonlinear Analysis 63 (2005), No. 6-7, e1–e9.10.1016/j.na.2005.02.091Search in Google Scholar

[27] C. Ebmeyer and W. B. Liu, Quasi-norm interpolation error estimates for finite element approximations of problems with p-structure, Numer. Math. 100 (2005), 233–258.10.1007/s00211-005-0594-5Search in Google Scholar

[28] C. Ebmeyer, W.B. Liu, and M. Steinhauer, Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains, Z. Anal. Anwendungen 24 (2005), No. 2, 353–374.10.4171/zaa/1245Search in Google Scholar

[29] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM, Philadelphia, PA, 1999.10.1137/1.9781611971088Search in Google Scholar

[30] A. Ern and J. L. Guermond, Finite Elements I: Approximation and Interpolation, Texts in Applied Mathematics 1, Springer International Publishing, 2021.10.1007/978-3-030-56341-7Search in Google Scholar

[31] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Inc., River Edge, NJ, 2003.10.1142/9789812795557Search in Google Scholar

[32] C. Helanow and J. Ahlkrona, Stabilized equal low-order finite elements in ice sheet modeling—accuracy and robustness, Comput. Geosci. 22 (2018), No. 4, 951–974.10.1007/s10596-017-9713-5Search in Google Scholar

[33] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science & Engineering 9 (2007), No. 3, 90–95.10.1109/MCSE.2007.55Search in Google Scholar

[34] A. Kaltenbach and M. Růžička, Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with Orlicz-structure, ESAIM: Mathematical Modelling and Numerical Analysis 57 (2023), No. 3, 1381–1411.10.1051/m2an/2023028Search in Google Scholar

[35] A. Kaltenbach and M. Zeinhofer, The deep Ritz method for parametric p-Dirichlet problems, arXiv:2207.01894, 2022.Search in Google Scholar

[36] D. J. Liu, A. Q. Li, and Z. R. Chen, Nonconforming FEMs for the p-Laplace problem, Adv. Appl. Math. Mech. 10 (2018), No. 6, 1365–1383.10.4208/aamm.OA-2018-0117Search in Google Scholar

[37] W. Liu and N. Yan, Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian, Numer. Math. 89 (2001), No. 2, 341–378.10.1007/PL00005470Search in Google Scholar

[38] W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian, SIAM J. Numer. Anal. 39 (2001), No. 1, 100–127.10.1137/S0036142999351613Search in Google Scholar

[39] W. B. Liu, Degenerate quasilinear elliptic equations arising from bimaterial problems in elastic–plastic mechanics, Nonlinear Anal. 35 (1999), No. 4, Ser. A: Theory Methods, 517–529.10.1016/S0362-546X(98)00014-5Search in Google Scholar

[40] A. Logg and G. N. Wells, DOLFIN: Automated Finite Element Computing, ACM Transactions on Mathematical Software 37 (2010), No. 2.10.1145/1731022.1731030Search in Google Scholar

[41] J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Computation 13, Chapman & Hall, London, 1996.10.1007/978-1-4899-6824-1Search in Google Scholar

[42] T. Malkmus, M. Růžička, S. Eckstein, and I. Toulopoulos, Generalizations of SIP methods to systems with p-structure, IMA J. Numer. Anal. 38 (2018), No. 3, 1420–1451.10.1093/imanum/drx040Search in Google Scholar

[43] P. Oswald, On the robustness of the BPX-preconditioner with respect to jumps in the coefficients, Mathematics of Computation 68 (1999), No. 226, 633–650.10.1090/S0025-5718-99-01041-8Search in Google Scholar

[44] C. Padra, A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows, SIAM Journal on Numerical Analysis 34 (1997), No. 4, 1600–1615.10.1137/S0036142994278322Search in Google Scholar

[45] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Math., Vol. 606, 1977, pp. 292–315.10.1007/BFb0064470Search in Google Scholar

[46] M. Růžička and L. Diening, Non-Newtonian fluids and function spaces, In: Nonlinear Analysis, Function Spaces and Applications, Proceedings of NAFSA 2006, Prague, Vol. 8, 2007, pp. 95–144.Search in Google Scholar

[47] L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation 54 (1990), 483–493.10.1090/S0025-5718-1990-1011446-7Search in Google Scholar

[48] Rüdiger Verfürth, A posteriori error estimates for nonlinear problems, Mathematics of Computation (1994), 445–475.10.1090/S0025-5718-1994-1213837-1Search in Google Scholar

[49] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.10.1007/978-1-4612-0981-2Search in Google Scholar

A Appendix

In this appendix, we give a proof of the inequalities (3.1).

Proposition A.1

Let ψ : ℝ⩾0 → ℝ⩾0 be an N-function such that ψΔ2 ∩ ∇2. Then, for every vhSD1,cr(Th), m ∈ {0, 1}, a ⩾ 0, and T ∈ 𝓣h, we have that

Tψa(hTm|hm(vhIhavvh)|)dxcavSSh(T)ΓNSψa(|[[vh]]S|)ds

where cav > 0 depends only on Δ2(ψ), Δ2(ψ*) > 0 and the chunkiness ω0 > 0.

Proof

Owing to [8, Lem. A.2] together with [30, Lem. 12.1], there exists a constant cav > 0, depending only on the chunkiness ω0 > 0, such that

hTmhm(vhIhavvh)L(T;Rdm)c¯avSSh(T)ΓNS|[[vh]]S|ds. (A.1)

Using in (A.1) the Δ2-condition and convexity of ψa : ℝ⩾0 → ℝ⩾0, a ⩾ 0, in particular, Jensen’s inequality, and that suph>0 supT∈𝓣h card(𝓢h(T) ∖ ΓN) ⩽ c𝓣, where c𝓣 > 0 depends only on the chunkiness ω0 > 0, we find that

Tψa(hTm|hm(vhIhavvh)|)dxΔ2(ψa)c¯avcTψa(1card(Sh(T)ΓN)SSh(T)ΓNS|[[vh]]S|ds)Δ2(ψa)c¯avcT1card(Sh(T)ΓN)SSh(T)ΓNSψa(|[[vh]]S|)ds.

Eventually, using that supa⩾0 Δ2(ψa) < ∞, cf. [22, Lem. 22], we conclude the assertion.□

Corollary A.1

Let ψ : ℝ⩾0 → ℝ⩾0 be an N-function such that ψΔ2 ∩ ∇2. Then, for every vh SD1,cr (𝓣h), m ∈ {0, 1}, a ⩾ 0, and T ∈ 𝓣h, we have that

Tψa(hTm|hm(vhIhavvh)|)dxcavSSh(T)ΓNSψa(hS|[[hvh]]S|)dsc~avωTψa(hT|hvh|)dx

where av > 0 depends only on Δ2(ψ), Δ2(ψ*) > 0 and the chunkiness ω0 > 0.

Proof

Follows from Proposition A.1, if we exploit that [[vh]]S=[[hvh]]S(idRdxS) on S for all S ∈ 𝓢h and vh SD1,cr (𝓣h) and the discrete trace inequality [30, Lem. 12.8].□

Received: 2022-10-22
Revised: 2023-02-25
Accepted: 2023-03-25
Published Online: 2023-08-21
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnma-2022-0106/html?lang=en
Scroll to top button