Abstract
We consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction–diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction–diffusion problems. The reduced basis does not depend on the fractional power s for 0 < smin ⩽ s ⩽ smax < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments.
Funding: This research was supported by the NSF grant DMS-1817691 (AB-DG-AZ); DG was supported by the Swiss National Science Foundation grant P2ELP2-175056 and IAMCS at TAMU.
References
[1] H. Antil and E. Otárola, A FEM for an optimal control problem of fractional powers of elliptic operators, SIAM J. Control Optim. 53 (2015), No. 6, 3432–3456.10.1137/140975061Search in Google Scholar
[2] H. Antil, E. Otárola, and A. J. Salgado, Optimization with respect to order in a fractional difusion model: Analysis, approximation and algorithmic aspects, J. Sci. Comput. 77 (2018), No. 1, 204–224.10.1007/s10915-018-0703-0Search in Google Scholar
[3] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J. Salgado, Numerical methods for fractional difusion, Comput. Visual. Sci. 19 (2018), No. 5, 19–46.10.1007/s00791-018-0289-ySearch in Google Scholar
[4] A. Bonito, W. Lei, and J. E. Pasciak, On sinc quadrature approximations of fractional powers of regularly accretive operators, J. Numer. Math. 27 (2018), No. 2, 57–68.10.1515/jnma-2017-0116Search in Google Scholar
[5] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comp. 84 (2015), No. 295, 2083–2110.10.1090/S0025-5718-2015-02937-8Search in Google Scholar
[6] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators, IMA J. Numer. Anal. 37 (2017), No. 3, 1245–1273.10.1093/imanum/drw042Search in Google Scholar
[7] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, and K. Burrage, Fractional difusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, J. Royal Soc. Interface11 (2014), No. 97, 20140352.10.1098/rsif.2014.0352Search in Google Scholar PubMed PubMed Central
[8] A. Bufa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici, A priori convergence of the Greedy algorithm for the parameterized reduced basis, ESAIM: Math. Model. Numer. Anal. 46 (2012), No. 3, 595–603.10.1051/m2an/2011056Search in Google Scholar
[9] O. Burkovska and M. Gunzburger, Aine approximation of parametrized kernels and model order reduction for nonlocal and fractional Laplace models, arXiv preprint arXiv:1901.06748 [math.NA] (2019).10.1137/19M124321XSearch in Google Scholar
[10] W. Chen, A speculative study of 2/3-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures, Chaos16 (2006), No. 2, 023126.10.1063/1.2208452Search in Google Scholar PubMed
[11] A. Cohen, W. Dahmen, and R. DeVore, Reduced Basis Greedy Selection Using Random Training Sets, arXiv preprint arXiv:1810.09344 [math.NA] (2018).10.1051/m2an/2020004Search in Google Scholar
[12] A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Numer. 24 (2015), No. 1, 1–159.10.1017/S0962492915000033Search in Google Scholar
[13] T. Danczul and J. Schöberl, A reduced basis method for fractional difusion operators, I, arXiv preprint arXiv:1904.05599 [math.NA] (2019). Search in Google Scholar
[14] R. DeVore, G. Petrova, and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces, Constr. Approx. 37 (2013), No. 3, 455–466.10.1007/s00365-013-9186-2Search in Google Scholar
[15] H. Dinh, H. Antil, Y. Chen, E. Cherkaev, and A. Narayan, Model reduction for fractional elliptic problems using Kato’s formula, arXiv preprint arXiv:1904.09332 [math.NA] (2019).10.3934/mcrf.2021004Search in Google Scholar
[16] J. L. Eftang, A. T. Patera, and E. M. Rønquist, An ‘hp’ certiied reduced basis method for parametrized elliptic partial diferential equations, SIAM J. Sci. Comput. 32 (2010), No. 6, 3170–3200.10.1137/090780122Search in Google Scholar
[17] P. Gatto and J. S. Hesthaven, Numerical approximation of the fractional Laplacian via hp-inite elements, with an application to image denoising, J. Sci. Comput. 65 (2015), No. 1, 249–270.10.1007/s10915-014-9959-1Search in Google Scholar
[18] A. A. Gončar, Zolotarev problems connected with rational functions, Math. USSR-Sb. 7 (1969), No. 4, 623–635.10.1070/SM1969v007n04ABEH001107Search in Google Scholar
[19] Y. D. Ha and F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract. 162 (2010), No. 1-2, 229–244.10.1007/978-90-481-9760-6_18Search in Google Scholar
[20] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth, and G. E. Karniadakis, What is the fractional Laplacian?, arXiv preprint arXiv:1801.09767 [math.NA] (2018).Search in Google Scholar
[21] Y. Maday, A. T. Patera, and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial diferential equations, C.R. Math. 335 (2002), No. 3, 289–294.10.1016/S1631-073X(02)02466-4Search in Google Scholar
[22] Y. Maday, A. T. Patera, and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial diferential equations, J. Sci. Comput. 17 (2002), No. 1-4, 437–446.10.1023/A:1015145924517Search in Google Scholar
[23] R. H. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to fractional difusion in general domains: A priori error analysis, Found. Comput. Math. 15 (2015), No. 3, 733–791.10.1007/s10208-014-9208-xSearch in Google Scholar
[24] A. T. Patera and G. Rozza, A Posteriori Error Estimation for Parametrized Partial Diferential Equations, Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007.Search in Google Scholar
[25] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Diferential Equations. An Introduction, La Matematica per il 3+2 92, Springer, 2016.10.1007/978-3-319-15431-2Search in Google Scholar
[26] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids48 (2000), No. 1, 175–209.10.2172/1895Search in Google Scholar
[27] M. A. Teodor and S. Pilipovic, Fractional Calculus with Applications in Mechanics: Vibrations and Difusion Processes, ISTE Ltd and John Wiley and Sons Inc, Hoboken (2014).Search in Google Scholar
[28] H. Triebel, Interpolation Theory, Function Spaces, Diferential Operators, second ed, Johann Ambrosius Barth, Heidelberg, 1995.Search in Google Scholar
[29] K. Yosida, Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the sixth (1980) edition.10.1007/978-3-642-61859-8Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The deal.II library, Version 9.2
- Reduced basis approximations of the solutions to spectral fractional diffusion problems
- Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems
- Doubly-adaptive artificial compression methods for incompressible flow
Articles in the same Issue
- Frontmatter
- The deal.II library, Version 9.2
- Reduced basis approximations of the solutions to spectral fractional diffusion problems
- Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems
- Doubly-adaptive artificial compression methods for incompressible flow