Abstract
We present a numerical study of the sensitivity of the grad-div stabilization parameter for mixed finite element discretizations of incompressible flow problems. For incompressible isothermal and non-isothermal Stokes equations and Navier-Stokes equations, we develop the associated sensitivity equations for changes in the grad-div parameter. Finite element schemes are devised for computing solutions to the sensitivity systems, analyzed for stability and accuracy, and finally tested on several benchmark problems. Our results reveal that solutions are most sensitive for small values of the parameter, near obstacles and corners, when the pressure is large, and when the viscosity is small.
Funding
The work of the third author was partially supported by NSF grant DMS1112593.
References
1 M. Anitescu and W. J. Layton, Sensitivities in Large Eddy Simulation and Improved Estimates of Turbulent Flow Functionals, J. Comp. Phys. 178 (2001), 391-426.10.1137/050631161Suche in Google Scholar
2 G. Baker, Galerkin Approximations for the Navier-Stokes Equations, Harvard University, 1976.Suche in Google Scholar
3 S. Boerm and S. Le Borne, H-LU factorization in preconditioners for augmented Lagrangian and grad-div stabilized saddle point systems, Int.J. Numer. Meth. Fluids 68 (2012), 83-98.10.1002/fld.2495Suche in Google Scholar
4 J. Borggaard and J. Burns, A sensitivity equation approach to shape optimization in fluid flows, In: Flow Control, Vol.68 of Proc. of the IMA, Springer-Verlag, 1995.10.1007/978-1-4612-2526-3_3Suche in Google Scholar
5 J. Borggaard and J. Burns, A PDE sensitivity equation method for optimal aerodynamic design, J. Comp. Phys. 136 (1997), 366-384.10.1006/jcph.1997.5743Suche in Google Scholar
6 J. Borggaard and A. Verma, Solutions to continuous sensitivity equations using Automatic Differentiation, SIAM Sci. Comp. 22 (2001), 39-62.10.1137/S1064827599352136Suche in Google Scholar
7 S. Brennerand L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 2008.10.1007/978-0-387-75934-0Suche in Google Scholar
8 M. Case, V. Ervin, A. Linke, and L. Rebholz, A connection between Scott-Vogelius elements and grad-div stabilization, SIAM J. Numer. Anal. 49 (2011), 1461-1481.10.1137/100794250Suche in Google Scholar
9 L. Franca and T. Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg. 69 (1988), 89-129.10.1016/0045-7825(88)90168-5Suche in Google Scholar
10 K. Galvin, A. Linke, L. Rebholz, and N. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comp. Meth. Appl. Mech. Engrg. 237 (2012), 166-176.10.1016/j.cma.2012.05.008Suche in Google Scholar
11 R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator splitting methods in nonlinear mechanics, SIAM, Studies in Applied Mathematics, Philadelphia, 1989.10.1137/1.9781611970838Suche in Google Scholar
12 A. Godfrey and E. Cliff, Direct calculation of aerodynamic force derivatives: A sensitivity equation approach, Proc. of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 0393 (1998).10.2514/6.1998-393Suche in Google Scholar
13 M. Gunzburger, Sensitivities, adjoints and flow optimization, Int.J. Num. Meth. Fluids 31 (1999), 53-78.10.1002/(SICI)1097-0363(19990915)31:1<53::AID-FLD955>3.0.CO;2-ZSuche in Google Scholar
14 F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), 251-265.10.1515/jnum-2012-0013Suche in Google Scholar
15 T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization, Int.J. Numer. Meth. Fluids71 (2013), 118-134.10.1002/fld.3654Suche in Google Scholar
16 J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for the second order time discretization, SIAM J. Numer. Anal. 2 (1990), 353-38 4.10.1137/0727022Suche in Google Scholar
17 R. Ingram, Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite-element method for the Navier-Stokes equations, Int.J. Numer. Anal. Modeling10 (2013), 257-297.Suche in Google Scholar
18 E. Jenkins, V. John, A. Linke, and L. Rebholz, On the parameter choice in grad-div stabilization for the Stokes equations, Adv. Comp. Math. 40 (2014), 491-516.10.1007/s10444-013-9316-1Suche in Google Scholar
19 M. Jobelin, C. Lapuerta, J.C. Latche, P. Angot, and B. Piar, A finite element penalty-projection method for incompressible flows, J. Comp. Phys. 217 (2006), 502-518.10.1016/j.jcp.2006.01.019Suche in Google Scholar
20 V. John, Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder, Int.J. Numer. Meth. Fluids44 (2004), 777-788.10.1002/fld.679Suche in Google Scholar
21 W. Layton, An Introduction to the Numerical Analysis of Viscous Incompressible Flows, SIAM, Philadelphia, 2008.10.1137/1.9780898718904Suche in Google Scholar
22 W. Layton, C. Manica, M. Neda, M. A. Olshanskii, and L. Rebholz, On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comp. Phys. 228 (2009), 3433-3447.10.1016/j.jcp.2009.01.027Suche in Google Scholar
23 A. Linke, M. Neilan, L. Rebholz, and N. Wilson, Improving efficiency of coupled schemes for Navier-Stokes equations by a connection to grad-div stabilized projection methods, Submitted (2014).Suche in Google Scholar
24 A. Linke, L. Rebholz, and N. Wilson, On the convergence rate of grad-div stabilized Taylor-Hood to Scott-Vogelius solutions for incompressible flow problems, Journal of Mathematical Analysis and Applications381 (2011), 612-626.10.1016/j.jmaa.2011.03.019Suche in Google Scholar
25 C. Manica, M. Neda, M. A. Olshanskii, and L. Rebholz, Enabling accuracy of Navier-Stokes-alpha through deconvolution and enhanced stability, M2AN: Math. Modelling Numer. Anal. 45 (2011), 277-308.10.1051/m2an/2010042Suche in Google Scholar
26 M. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp. 73 (2004), 1699-1718.10.1090/S0025-5718-03-01629-6Suche in Google Scholar
27 M. A. Olshanskii, A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods, Comput. Meth. Appl. Mech. Engrg. 191 (2002), 5515-5536.10.1016/S0045-7825(02)00513-3Suche in Google Scholar
28 M. A. Olshanskii, G. Lube, T. Heister, and J. Löwe, Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 198 (2009), 3975-3988.10.1016/j.cma.2009.09.005Suche in Google Scholar
29 M.A. Olshanskii and E.E. Tyrtyshnikov, Iterative Methods for Linear Systems: Theory and Applications, SIAM, Philadelphia, 2014.10.1137/1.9781611973464Suche in Google Scholar
30 F. Pahlevani, Sensitivity computations of eddy viscosity models with an application in drag computation, Int.J. Numer. Methods Fluids. 52 (2006), 381-392.10.1002/fld.1168Suche in Google Scholar
31 J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, Ph.D. thesis, Pennsylvania State University, 1994.Suche in Google Scholar
32 P. Sagaut and T. Lê, Some investigations of the sensitivity of large eddy simulation, Tech. Rep., ONERA (1997).10.1007/978-94-011-5624-0_8Suche in Google Scholar
33 M. Schäfer and S. Turek, The benchmark problem ‘flow around a cylinder’ flow simulation with high performance computers II, in E.H. Hirschel (Ed.), Notes on Numerical Fluid Mechanics52 (1996), 547-566.10.1007/978-3-322-89849-4_39Suche in Google Scholar
34 L. Stanley and D. Stewart, Design sensitivity analysis: Computational issues of sensitivity equation methods, Frontiers in Mathematics, SIAM, Philadelphia, 2002.10.1137/1.9780898717556Suche in Google Scholar
35 S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp. 74 (2005), 543-554.10.1090/S0025-5718-04-01711-9Suche in Google Scholar
© 2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Article
- The deal.II Library, Version 8.4
- Research Article
- Finite element error estimates for nonlinear convective problems
- Research Article
- Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems
- Research Article
- Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow
Artikel in diesem Heft
- Frontmatter
- Research Article
- The deal.II Library, Version 8.4
- Research Article
- Finite element error estimates for nonlinear convective problems
- Research Article
- Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems
- Research Article
- Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow