Home The Micromorphic Approach to Generalized Heat Equations
Article
Licensed
Unlicensed Requires Authentication

The Micromorphic Approach to Generalized Heat Equations

  • Weijie Liu , Khemais Saanouni EMAIL logo , Samuel Forest and Ping Hu
Published/Copyright: April 22, 2017

Abstract

In this paper, the micromorphic approach, previously developed in the mechanical context is applied to heat transfer and shown to deliver new generalized heat equations as well as the nonlocal effects. The latter are compared to existing formulations: the classical Fourier heat conduction, the hyperbolic type with relaxation time, the gradient of temperature or entropy theories, the double temperature model, the micro-temperature model or micro-entropy models. A new pair of thermodynamically-consistent micromorphic heat equations are derived from appropriate Helmholtz-free energy potentials depending on an additional micromorphic temperature and its first gradient. The additional micromorphic temperature associated with the classical local temperature is introduced as an independent degree of freedom, based on the generalized principle of virtual power. This leads to a new thermal balance equation taking into account the nonlocal thermal effects and involving an internal length scale which represents the characteristic size of the system. Several existing extended generalized heat equations could be retrieved from constrained micromorphic heat equations with suitable selections of the Helmholtz-free energy and heat flux expressions. As an example the propagation of plane thermal waves is investigated according to the various generalized heat equations. Possible applications to fast surface processes, nanostructured media and nanosystems are also discussed.

Funding statement: The financial support from China Scholarship Council and ANR through the Program Micromorfing with contract ANR-14-CE07-0035-01 is fully acknowledged.

References

[1] J. Fourier, Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils, 1822.Search in Google Scholar

[2] J. Fourier, The Analytical Theory of Heat. Translated, with notes, by Alexander Freeman. University Press, Cambridge, 1878.Search in Google Scholar

[3] C. Cattaneo, Sulla conduzione del calore, in: A. Pignedoli, (ed.) Some Aspects of Diffusion Theory, Vol. 42, Springer-Verlag, Berlin, (1948).Search in Google Scholar

[4] C. Cattaneo, Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee, C. R. Hebd. Seances Acad. Sci. 247 (1958), no. 4, 431–433.Search in Google Scholar

[5] P. Vernotte, Les paradoxes de la théorie continue de léquation de la chaleur, C. R. Hebd. Seances Acad. Sci. 246 (1958), no. 22, 3154–3155.Search in Google Scholar

[6] B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals, Arch. Rational Mech. Anal. 80 (1982), no. 2, 135–158.10.1007/BF00250739Search in Google Scholar

[7] B. D. Coleman, M. Fabrizio and D. R. Owen, Thermodynamics and the constitutive relations for second sound in crystals, in: G. Grioli, (ed.) Thermodynamics and Constitutive Equations, Vol. 228, Springer-Verlag, Berlin, 1985, 20–43.10.1007/BFb0017953Search in Google Scholar

[8] D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys. 51 (1988), no. 8, 1105–1179.10.1088/0034-4885/51/8/002Search in Google Scholar

[9] I. Müller and T. Ruggeri, Extended Thermodynamics, Vol. 37. Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1993.10.1007/978-1-4684-0447-0Search in Google Scholar

[10] C. Bai and A. S. Lavine, On hyperbolic heat conduction and the second law of thermodynamics, J. Heat Transfer117 (1995), no. 2, 256–263.10.1115/1.2822514Search in Google Scholar

[11] A. Barletta and E. Zanchini, Hyperbolic heat conduction and local equilibrium: A second law analysis, Int. J. Heat. Mass Transf. 40 (1997), no. 5, 1007–1016.10.1016/0017-9310(96)00211-6Search in Google Scholar

[12] E. Zanchini, Hyperbolic-heat-conduction theories and nondecreasing entropy, Phys. Rev. B60 (1999), no. 2, 991–997.10.1103/PhysRevB.60.991Search in Google Scholar

[13] R. J. Swenson, Heat conduction - finite or infinite propagation, J. Non-Equilib. Thermodyn. 3 (1978), no. 1, 39–48.10.1515/jnet.1978.3.1.39Search in Google Scholar

[14] V. Peshkov, Second sound in helium II, J. Phys. USSR8 (1944), 381–386.Search in Google Scholar

[15] V. Peshkov, Determination of the velocity of propagation of the second sound in helium II, J. Phys. USSR10 (1946), 389–398.10.1016/B978-0-08-015816-7.50016-XSearch in Google Scholar

[16] H. E. Jackson and C. T. Walker, Thermal conductivity, second sound, and phonon-phonon interactions in NaF, Phys. Rev. B3 (1971), no. 4, 1428–1439.10.1103/PhysRevB.3.1428Search in Google Scholar

[17] V. Narayanamurti and R. C. Dynes, Observation of second sound in bismuth, Phys. Rev. Lett. 28 (1972), no. 22, 1461–1465.10.1103/PhysRevLett.28.1461Search in Google Scholar

[18] T. Da Yu, Shock wave formation around a moving heat source in a solid with finite speed of heat propagation, Int. J. Heat. Mass Transf. 32 (1989), no. 10, 1979–1987.10.1016/0017-9310(89)90166-XSearch in Google Scholar

[19] J. Wang and J.-S. Wang, Carbon nanotube thermal transport: Ballistic to diffusive, Appl. Phys. Lett. 88 (2006), no. 11, 111909.10.1063/1.2185727Search in Google Scholar

[20] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, et al. Nanoscale thermal transport, J. Appl. Phys. 93 (2003), no. 2, 793–818.10.1063/1.1524305Search in Google Scholar

[21] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, et al. Nanoscale thermal transport. II. 2003–2012, Appl. Phys. Rev. 1 (2014), no. 1, 011305.10.1063/1.4832615Search in Google Scholar

[22] D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd ed., John Wiley & Sons, Chichester, 2014.10.1002/9781118818275Search in Google Scholar

[23] D. Jou and A. Cimmelli Vito, Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: An overview, Commun. Appl. Ind. Math. 7 (2016), no. 2, 196–226.10.1515/caim-2016-0014Search in Google Scholar

[24] B. C. Larson, J. Z. Tischler and D. M. Mills, Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation, J. Mater. Res. 1 (1986), no. 1, 144–154.10.1557/JMR.1986.0144Search in Google Scholar

[25] A. Sellitto, V. A. Cimmelli and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems. SEMA SIMAI Springer Series, vol. 6. Springer International Publishing, Switzerland, 2016.10.1007/978-3-319-27206-1Search in Google Scholar

[26] J. Kaiser, T. Feng, J. Maassen, X. Wang, X. Ruan and M. Lundstrom, Thermal transport at the nanoscale: A Fourier’s law vs. phonon Boltzmann equation study, J. Appl. Phys. 121 (2017), no. 4, 044302.10.1063/1.4974872Search in Google Scholar

[27] F. X. Alvarez and D. Jou, Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes, Appl. Phys. Lett. 90 (2007), no. 8, 083109.10.1063/1.2645110Search in Google Scholar

[28] Y. Guo and M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595 (2015), 1–44.10.1016/j.physrep.2015.07.003Search in Google Scholar

[29] C. Körner and H. W. Bergmann, The physical defects of the hyperbolic heat conduction equation, Appl. Phys. A67 (1998), no. 4, 397–401.10.1007/s003390050792Search in Google Scholar

[30] I. Müeller, Zur Ausbreitungsgeschwindigkeit Von Störungen in Kontinuierlichen Medien, Technische Hochschule, Aachen, 1966.Search in Google Scholar

[31] I. Muller, Zum Paradoxon der Warmeleitungstheorie, Z. Phys. 198 (1967), 329–344.10.1007/BF01326412Search in Google Scholar

[32] D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, Springer Netherlands, Dordrecht, 2010.10.1007/978-90-481-3074-0Search in Google Scholar

[33] İ. Temizer and P. Wriggers, A micromechanically motivated higher-order continuum formulation of linear thermal conduction, ZAMM J. Appl. Math. Mech. 90 (2010), no. 10–11, 768–782.10.1002/zamm.201000009Search in Google Scholar

[34] R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys. Rev. 148 (1966), no. 2, 766–778.10.1103/PhysRev.148.766Search in Google Scholar

[35] S. Both, B. Czél, T. Fülöp, G. Gróf, Á. Gyenis, R. Kovács, et al. Deviation from the Fourier law in room-temperature heat pulse experiments, J. Non-Equilib. Thermodyn. 41 (2016), no. 1, 41–48.10.1515/jnet-2015-0035Search in Google Scholar

[36] P. Ván and T. Fülöp, Universality in heat conduction theory: Weakly nonlocal thermodynamics, Ann. Phys. 524 (2012), no. 8, 470–478.10.1002/andp.201200042Search in Google Scholar

[37] G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of extended irreversible thermodynamics, J. Non-Equilib. Thermodyn. 39 (2014), no. 1, 35–59.10.1515/jnetdy-2013-0029Search in Google Scholar

[38] S. L. Sobolev, Two-temperature discrete model for nonlocal heat conduction, J. Phys. III France3 (1993), no. 12, 2261–2269.10.1051/jp3:1993273Search in Google Scholar

[39] S. L. Sobolev, Two-temperature Stefan problem, Phys. Lett. 197 (1995), no. 3, 243–246.10.1016/0375-9601(94)00939-MSearch in Google Scholar

[40] L. S. Sergei, Local non-equilibrium transport models, Physics-Uspekhi40 (1997), no. 10, 1043.10.1070/PU1997v040n10ABEH000292Search in Google Scholar

[41] S. L. Sobolev, Nonlocal diffusion models: Application to rapid solidification of binary mixtures, Int. J. Heat. Mass Transf. 71 (2014), 295–302.10.1016/j.ijheatmasstransfer.2013.12.048Search in Google Scholar

[42] S. L. Sobolev, Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses, Int. J. Heat. Mass Transf. 94 (2016), 138–144.10.1016/j.ijheatmasstransfer.2015.11.075Search in Google Scholar

[43] D. Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales, J. Heat Transfer117 (1995), no. 1, 8–16.10.1115/1.2822329Search in Google Scholar

[44] G. Chen, Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett. 86 (2001), no. 11, 2297–2300.10.1103/PhysRevLett.86.2297Search in Google Scholar

[45] A. V. Luikov, V. A. Bubnov and I. A. Soloviev, On wave solutions of the heat-conduction equation, Int. J. Heat. Mass Transf. 19 (1976), no. 3, 245–248.10.1016/0017-9310(76)90027-2Search in Google Scholar

[46] V. A. Bubnov, Wave concepts in the theory of heat, Int. J. Heat. Mass Transf. 19 (1976), no. 2, 175–184.10.1016/0017-9310(76)90110-1Search in Google Scholar

[47] P. Ireman and Q.-S. Nguyen, Using the gradients of temperature and internal parameters in continuum thermodynamics, C. R. MeC. 332 (2004), no. 4, 249–255.10.1016/j.crme.2004.01.012Search in Google Scholar

[48] G. A. Maugin, Internal variables and dissipative structures, J. Non-Equilib. Thermodyn. 15 (1990), no. 2, 173–192.Search in Google Scholar

[49] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilib. Thermodyn. 19 (1994), no. 3, 217–249.10.1515/jnet.1994.19.3.217Search in Google Scholar

[50] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part II. Applications, J. Non-Equilib. Thermodyn. 19 (1994), no. 3, 250–289.10.1515/jnet.1994.19.3.250Search in Google Scholar

[51] S. Forest, J.-M. Cardona and R. Sievert, Thermoelasticity of second-grade media, in: Maugin G. A., Drouot R., Sidoroff F. (eds.), Continuum Thermomechanics, Springer Netherlands, Dordrecht, (2000), 163–176.10.1007/0-306-46946-4_12Search in Google Scholar

[52] S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, C. R. MeC. 336 (2008), no. 4, 347–353.10.1016/j.crme.2008.01.007Search in Google Scholar

[53] Q.-S. Nguyen, Gradient thermodynamics and heat equations, C. R. MeC. 338 (2010), no. 6, 321–326.10.1016/j.crme.2010.07.010Search in Google Scholar

[54] E. C. Aifantis, Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun. 7 (1980), no. 4, 219–226.10.1016/0093-6413(80)90042-7Search in Google Scholar

[55] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), no. 3, 265–296.10.1007/BF01202949Search in Google Scholar

[56] S. Forest and E. C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int. J. Solids Struct. 47 (2010), no. 25–26, 3367–3376.10.1016/j.ijsolstr.2010.07.009Search in Google Scholar

[57] I. Müller, Thermodynamics of mixtures and phase field theory, Int. J. Solids Struct. 38 (2001), no. 6–7, 1105–1113.10.1016/S0020-7683(00)00076-7Search in Google Scholar

[58] C. Wozniak, Thermoelasticity of non-simple oriented materials, Int. J. Eng. Sci. 5 (1967), no. 8, 605–612.10.1016/0020-7225(67)90059-6Search in Google Scholar

[59] A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple micro-elastic solids—I, Int. J. Eng. Sci. 2 (1964), no. 2, 189–203.10.1016/0020-7225(64)90004-7Search in Google Scholar

[60] E. S. Suhubl and A. C. Eringen, Nonlinear theory of micro-elastic solids—II, Int. J. Eng. Sci. 2 (1964), no. 4, 389–404.10.1016/0020-7225(64)90017-5Search in Google Scholar

[61] R. A. Grot, Thermodynamics of a continuum with microstructure, Int. J. Eng. Sci. 7 (1969), no. 8, 801–814.10.1016/0020-7225(69)90062-7Search in Google Scholar

[62] D. Ieşan, On the theory of heat conduction in micromorphic continua, Int. J. Eng. Sci. 40 (2002), no. 16, 1859–1878.10.1016/S0020-7225(02)00066-6Search in Google Scholar

[63] A. C. Eringen, Mechanics of micromorphic materials, in: Görtler H. (ed.), Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany) 1964, Springer, Berlin, Heidelberg (1966), 131–138.10.1007/978-3-662-29364-5_12Search in Google Scholar

[64] A. C. Eringen, Balance laws of micromorphic mechanics, Int. J. Eng. Sci. 8 (1970), no. 10, 819–828.10.1016/0020-7225(70)90084-4Search in Google Scholar

[65] A. C. Eringen, Balance laws of micromorphic continua revisited, Int. J. Eng. Sci. 30 (1992), no. 6, 805–810.10.1016/0020-7225(92)90109-TSearch in Google Scholar

[66] A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer Verlag, New York, 1999.10.1007/978-1-4612-0555-5Search in Google Scholar

[67] S. L. Koh, Theory of a second-order microfluid, Rheol. Acta12 (1973), no. 3, 418–424.10.1007/BF01502994Search in Google Scholar

[68] P. Říha, On the theory of heat-conducting micropolar fluids with microtemperatures, Acta Mech. 23 (1975), no. 1, 1–8.10.1007/BF01177664Search in Google Scholar

[69] P. Riha, Poiseuille flow of microthermopolar fluids, Acta Tech. 22 (1977), 602–613.Search in Google Scholar

[70] P. Verma, D. Singh and K. Singh, Hagen-Poiseuille flow of microthermopolar fluids in a circular pipe, Acta Tech. 24 (1979), 402–412.Search in Google Scholar

[71] P. Říha, On the microcontinuum model of heat conduction in materials with inner structure, Int. J. Eng. Sci. 14 (1976), no. 6, 529–535.10.1016/0020-7225(76)90017-3Search in Google Scholar

[72] A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Soc. London Ser. 432 (1991), no. 1885, 171–194.10.1098/rspa.1991.0012Search in Google Scholar

[73] A. E. Green and P. M. Naghdi, On thermodynamics and the nature of the second law, Proc. Royal Soc. London Ser. 357 (1977), no. 1690, 253–270.10.1098/rspa.1977.0166Search in Google Scholar

[74] A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast. 31 (1993), no. 3, 189–208.10.1007/BF00044969Search in Google Scholar

[75] D. Ieşan and L. Nappa, On the theory of heat for micromorphic bodies, Int. J. Eng. Sci. 43 (2005), no. 1–2, 17–32.10.1016/j.ijengsci.2004.09.003Search in Google Scholar

[76] S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech. 135 (2009), no. 3, 117–131.10.1061/(ASCE)0733-9399(2009)135:3(117)Search in Google Scholar

[77] K. Saanouni and M. Hamed, Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects, Int. J. Solids Struct. 50 (2013), no. 14–15, 2289–2309.10.1016/j.ijsolstr.2013.03.027Search in Google Scholar

[78] C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. The Non-Linear Field Theories of Mechanics, Springer, Berlin, Heidelberg, 2004.10.1007/978-3-662-10388-3Search in Google Scholar

[79] W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, J. Heat Transfer112 (1990), no. 3, 555–560.10.1115/1.2910422Search in Google Scholar

[80] Q.-S. Nguyen and S. Andrieux, The non-local generalized standard approach: A consistent gradient theory, C. R. MeC. 333 (2005), no. 2, 139–145.10.1016/j.crme.2004.09.010Search in Google Scholar

[81] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), no. 2, 258–267.10.1063/1.1744102Search in Google Scholar

[82] M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D92 (1996), no. 3–4, 178–192.10.1016/0167-2789(95)00173-5Search in Google Scholar

[83] W. Dreyer and H. Struchtrup, Heat pulse experiments revisited., Continuum Mech. Thermodyn. 5 (1993), no. 1, 3–50.10.1007/BF01135371Search in Google Scholar

[84] D. Ieşan, Thermoelasticity of bodies with microstructure and microtemperatures, Int. J. Solids Struct. 44 (2007), no. 25–26, 8648–8662.10.1016/j.ijsolstr.2007.06.027Search in Google Scholar

[85] D. Ieşan and R. Quintanilla, On thermoelastic bodies with inner structure and microtemperatures, J. Math. Anal. Appl. 354 (2009), no. 1, 12–23.10.1016/j.jmaa.2008.12.017Search in Google Scholar

[86] D. Ieşan and A. Scalia, Plane deformation of elastic bodies with microtemperatures, Mech. Res. Commun. 37 (2010), no. 7, 617–621.10.1016/j.mechrescom.2010.09.005Search in Google Scholar

[87] P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J. Appl. Math. 25 (1973), no. 3, 556–575.10.1137/0125053Search in Google Scholar

[88] F. Mandl, Statistical Physics, 2nd ed., The Manchester Physics. John Wiley & Sons, Chichester, 2008.Search in Google Scholar

[89] R. H. Swendsen, Statistical mechanics of colloids and Boltzmann’s definition of the entropy, Am. J. Phys. 74 (2006), no. 3, 187–190.10.1119/1.2174962Search in Google Scholar

[90] J. Šesták and P. Holba, Heat inertia and temperature gradient in the treatment of DTA peaks, J. Therm. Anal. Calorim. 113 (2013), no. 3, 1633–1643.10.1007/s10973-013-3025-3Search in Google Scholar

[91] P. Holba and J. Šesták, Heat inertia and its role in thermal analysis, J. Therm. Anal. Calorim. 121 (2015), no. 1, 303–307.10.1007/s10973-015-4486-3Search in Google Scholar

Received: 2016-11-27
Revised: 2017-3-6
Accepted: 2017-3-31
Published Online: 2017-4-22
Published in Print: 2017-10-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2016-0080/html?lang=en
Scroll to top button