Home The Soret Effect in Liquid Mixtures – A Review
Article
Licensed
Unlicensed Requires Authentication

The Soret Effect in Liquid Mixtures – A Review

  • Werner Köhler EMAIL logo and Konstantin I. Morozov
Published/Copyright: July 12, 2016

Abstract

The Soret effect describes diffusive motion that originates from a temperature gradient. It is observed in mixtures of gases, liquids and even solids. Although there is a formal phenomenological description based on linear nonequilibrium thermodynamics, the Soret effect is a multicause phenomenon and there is no univocal microscopic picture. After a brief historical overview and an outline of the fundamental thermodynamic concepts, this review focuses on thermodiffusion in binary and ternary liquid mixtures. The most important experimental techniques used nowadays are introduced. Then, a modern development in studying thermal diffusion, the discovery of both integral and specific additivity laws, is discussed. The former relate to the general behavior of the substances in a temperature field according to their thermophobicities, which prove to be pure component properties. The thermophobicities allow for a convenient classification of the phenomenon, a simple interpretation and a proper estimation and prediction of the thermodiffusion parameters. The specific laws relate to the additivity of the particular contributions. Among the latter, we discuss the isotopic Soret effect and the so-called chemical contribution. From the theoretical side, there are kinetic and thermodynamic theories, and the nature of the driving forces of thermodiffusion can be either of volume or surface type. Besides analytical models, computer simulations become increasingly important. Polymer solutions are special as they represent highly asymmetric molecular systems with a molar mass-independent thermophoretic mobility. Its origin is still under debate, and draining and non-draining models are presently discussed. Finally, some discussion is devoted to ternary mixtures, which only recently have been investigated in more detail.

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (KO1541/9-2, KO1541/10-1). K.I.M. acknowledges partial support by the Center of Absorption in Science, Ministry of Immigrant Absorption of Israel.

References

[1] A. Fick, Ueber diffusion, Ann. Phys.-Leipzig. 94 (1855), 59.10.1002/andp.18551700105Search in Google Scholar

[2] C. Ludwig, Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen, Sitzber. Akad. Wiss. Wien Math.-Naturw. Kl. 20 (1856), 539.Search in Google Scholar

[3] C. Soret, Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogéne dont deux parties sont portées a des températures différentes, Arch. Sci. Phys. Nat. Geneve 2 (1879), 48.Search in Google Scholar

[4] J. K. Platten, The Soret effect: a review of recent experimental results, J. Appl. Mech. 73 (2006), 5.10.1115/1.1992517Search in Google Scholar

[5] J. K. Platten and P. Costesèque, Charles Soret. A short biography, Eur. Phys. J. E 15 (2004), 235.10.1140/epje/i2004-10062-8Search in Google Scholar

[6] J. Janek, C. Korte and A. B. Lidiard, Thermodiffusion in ionic solids – model experiments and theory, in: Thermal Nonequilibrium Phenomena in Fluid Mixtures, Köhler, W., Wiegand, S., editors, volume 584 of Lecture Notes in Physics Berlin, Heidelberg: Springer (2002), 146.10.1007/3-540-45791-7_8Search in Google Scholar

[7] K. Wada, A. Suzuki, H. Sato and R. Kikuchi, Soret effect in solids, J. Phys. Chem. Solids 46 (1985), 1195.10.1016/0022-3697(85)90149-0Search in Google Scholar

[8] K. Clusius and G. Dickel, Neues Verfahren zur Gasentmischung und Isotopentrennung, Naturwissenschaften 26 (1938), 546.10.1007/BF01675498Search in Google Scholar

[9] K. Clusius and G. Dickel, Das Trennrohrverfahren bei Flüssigkeiten, Naturwissenschaften 27 (1939), 148.10.1007/BF01489130Search in Google Scholar

[10] H. Jensen, Das Clusius-Dickelsche Trennrohr und die physikalisch-mathematische Theorie seiner Wirkungsweise und Leistungsfähigkeit, Angew. Chem. 54 (1941), 405.10.1002/ange.19410543702Search in Google Scholar

[11] B. C. Reed, Liquid thermal diffusion during the Manhattan project, Phys. Perspect. 13 (2011), 161.10.1007/s00016-010-0039-0Search in Google Scholar

[12] P. Maier-Komor, Uranium isotope separation from 1941 to the present, Nucl. Instrum. Meth. A 613 (2010), 465.10.1016/j.nima.2009.10.005Search in Google Scholar

[13] R. M. Latypov, The origin of marginal compositional reversals in basicâ–ultrabasic sills and layered intrusions by soret fractionation, J. Petrol 44 (2003), 1579.10.1093/petrology/egg050Search in Google Scholar

[14] C. E. Lesher and D. Walker, Diffusion, atomic ordering, and mass transport, volume 8 of Advances in Physical Geochemistry, chapter Thermal Diffusion in Petrology, Springer, New York (1991), 396.10.1007/978-1-4613-9019-0_12Search in Google Scholar

[15] H. E. Huppert and R. S. J. Sparks, Double-diffusive convection due to crystallization in magmas, Annu. Rev. Earth Planet. Sci. 12 (1984), 11.10.1146/annurev.ea.12.050184.000303Search in Google Scholar

[16] D. J. Lacks, G. Goel, C. J. Bopp, J. A. Van Orman, C. E. Lesher and C. C. Lundstrom, Isotope fractionation by thermal diffusion in silicate melts, Phys. Rev. Lett. 108 (2012), 065901.10.1103/PhysRevLett.108.065901Search in Google Scholar PubMed

[17] G. Dominguez, G. Wilkins and M. H. Thiemens, The Soret effect and isotopic fractionation in high-temperature silicate melts, Nature 473 (2011), 70.10.1038/nature09911Search in Google Scholar PubMed

[18] F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, et al., Isotope fractionation in silicate melts by thermal diffusion, Nature 464 (2010), 396.10.1038/nature08840Search in Google Scholar PubMed

[19] F. M. Richter, Isotope fractionation in silicate melts by thermal diffusion, Nature 472 (2011), E1.10.1038/nature09954Search in Google Scholar PubMed

[20] F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, et al., Reply, Nature 472 (2011), E2.10.1038/nature09955Search in Google Scholar

[21] D. Walker and S. E. DeLong, Soret separation of mid-ocean ridge basalt magma, Contrib. Mineral Petrol. 79 (1982), 231.10.1007/BF00371514Search in Google Scholar

[22] D. Elthon and J. F. Casey, Comment on Soret separation of mid-ocean ridge basalt magma by D. Walker and S. E. DeLong, Contrib. Mineral Petrol. 85 (1984), 197.10.1007/BF00371709Search in Google Scholar

[23] D. Walker, C. E. Lesher and J. F. Hays, Soret separation of lunar liquid, Proc. Lunar Planet. Sci. 12B (1981), 991.Search in Google Scholar

[24] F. Montel, J. Bickert, A. Lagisquet and G. Galliero, Initial state of petroleum reservoirs: A comprehensive approach, J. Petrol. Sci. Eng. 58 (2007), 391.10.1016/j.petrol.2006.03.032Search in Google Scholar

[25] B. Wilbois, G. Galliero, J.-P. Caltagirone and F. Montel, Macroscopic model of multicomponent fluids in porous media, Philos. Mag. 83 (2003), 2209.10.1080/1478643031000107881Search in Google Scholar

[26] G. Galliero, B. Duguay, J.-P. Caltagirone and F. Montel, On thermal diffusion in binary and ternary Lennard-Jones mixtures by non-equilibrium molecular dynamics, Philos. Mag. 83 (2003), 2097.10.1080/0141861031000107935Search in Google Scholar

[27] G. Galliero and F. Montel, Nonisothermal gravitational segregation by molecular dynamics simulations, Phys. Rev. E 78 (2008), 041203.10.1103/PhysRevE.78.041203Search in Google Scholar

[28] M. Touzet, G. Galliero, V. Lazzeri, M. Z. Saghir, F. Montel and J.-C. Legros, Thermodiffusion: From microgravity experiments to the initial state of petroleum reservoirs, C. R. Mec. 339 (2011), 318.10.1016/j.crme.2011.03.008Search in Google Scholar

[29] P. Costesèque, D. Fargue and P. Jamet, Thermodiffusion in porous media and its consequences, in: Thermal Nonequilibrium Phenomena in Fluid Mixtures, Köhler, W. Wiegand, S., editors, Heidelberg: Springer (2002), 389.10.1007/3-540-45791-7_19Search in Google Scholar

[30] C. Karim, S. M. Jomaa and A. Akbarzadeh, A laboratory experimental study of mixing the solar pond gradient zone, Sol. Energy 85 (2011), 404.10.1016/j.solener.2010.10.010Search in Google Scholar

[31] C. Angeli and E. Leonardi, The effect of thermodiffusion on the stability of a salinity gradient solar pond, Int. J. Heat Mass Transfer 48 (2005), 4633.10.1016/j.ijheatmasstransfer.2005.05.021Search in Google Scholar

[32] C. Karim, Z. Slim, C. Kais, S. M. Jomaa and A. Akbarzadeh, Experimental study of the salt gradient solar pond stability, Sol. Energy 84 (2010), 24.10.1016/j.solener.2009.09.005Search in Google Scholar

[33] C. Guy and J. Schott, Modeling of Soret diffusion in radioactive waste glass, Appl. Geochem. 7 (1992), 33.10.1016/S0883-2927(09)80062-0Search in Google Scholar

[34] G. R. Longhurst, The Soret effect and its implications for fusion reactors, J. Nucl. Mater. 131 (1985), 61.10.1016/0022-3115(85)90425-8Search in Google Scholar

[35] F. Zheng, Thermophoresis of spherical and non-spherical particles: a review of theories and experiments, Adv. Colloid Interface Sci. 97 (2002), 255.10.1016/S0001-8686(01)00067-7Search in Google Scholar

[36] H. J. Keh and J. L. Yu, Migration of aerosol spheres under the combined action of thermophoretic and gravitational effects, Aerosol Sci. Technol. 22 (1995), 250.10.1080/02786829408959744Search in Google Scholar

[37] H. Brenner and J. R. Bielenberg, A continuum approach to phoretic motions: Thermophoresis, Phys. A. 355 (2005), 251.10.1016/j.physa.2005.03.020Search in Google Scholar

[38] G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems, Proc. Roy. Soc. A 307 (1968), 111.10.1098/rspa.1968.0178Search in Google Scholar

[39] H. Guo, F. Liu, G. J. Smallwood and O. L. Gülder, A numerical investigation of thermal diffusion influence on soot formation in ethylene/air diffusion flames, Int. J. Comput. Fluid D 18 (2004), 139.10.1080/10618560310001634203Search in Google Scholar

[40] D. W. Keith, Photophoretic levitation of engineered aerosols for geoengineering, PNAS 107 (2010), 16428.10.1073/pnas.1009519107Search in Google Scholar PubMed PubMed Central

[41] M. Küpper, Thermal creep-assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity, J. Geophys. Res. 120 (2015), 1346.10.1002/2015JE004848Search in Google Scholar

[42] J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, et al., Trapping cavitation bubbles with a self-focused laser beam, Opt. Lett. 29 (2004), 2136.10.1364/OL.29.002136Search in Google Scholar

[43] D. W. Berry, N. R. Heckenberg and H. Rubinsztein-Dunlop, Effects associated with bubble formation in optical trapping, J. Mod. Opt. 47 (2000), 1575–1585.10.1080/09500340008235124Search in Google Scholar

[44] N. O. Young, J. S. Goldstein and M. J. Block, The motion of bubbles in a vertical temperature gradient, J. Fluid Mech. 6 (1959), 350.10.1017/S0022112059000684Search in Google Scholar

[45] S. Danworaphong, W. Craig, V. Gusev and G. J. Diebold, Thermal diffusion shock waves, Phys. Rev. Lett. 94 (2005), 095901.10.1103/PhysRevLett.94.095901Search in Google Scholar PubMed

[46] H.-R. Jiang, N. Yoshinaga and M. Sano, Active motion of a Janus particle by self-thermophoresis in a defocused laser beam, Phys. Rev. Lett. 105 (2010), 268302.10.1103/PhysRevLett.105.268302Search in Google Scholar PubMed

[47] M. C. Yang and M. Ripoll, A self-propelled thermophoretic microgear, Soft Matter. 10 (2014), 1006.10.1039/c3sm52417eSearch in Google Scholar PubMed

[48] S. Semenov and M. Schimpf, Thermoosmosis as driving mechanism for micro- or nanoscale engine driven by external temperature gradient, J. Phys. Chem. C 119 (2015), 25628.10.1021/acs.jpcc.5b08670Search in Google Scholar

[49] C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis and R. D. Leonardo, Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects, Nat. Commun. 6 (2015), 7855.10.1038/ncomms8855Search in Google Scholar PubMed PubMed Central

[50] S. S. Hsiau and M. L. Hunt, Granular thermal diffusion in flows of binary-sized mixtures, Acta Mech. 114 (1996), 121.10.1007/BF01170399Search in Google Scholar

[51] J. K. Platten and J. C. Legros, Convection in Liquids, Springer, Heidelberg, New York, Tokyo, 1984.10.1007/978-3-642-82095-3Search in Google Scholar

[52] V. M. Shevtsova, D. E. Melnikov and J. C. Legros, Onset of convection in Soret-driven instability, Phys. Rev. E 73 (2006), 047302.10.1103/PhysRevE.73.047302Search in Google Scholar PubMed

[53] T. Lyubimova and N. Zubova, Onset and nonlinear regimes of ternary mixture convection in a square cavity, Eur. Phys. J. E 38 (2015), 19.10.1140/epje/i2015-15019-2Search in Google Scholar PubMed

[54] F. Winkel, S. Messlinger, W. Schöpf, I. Rehberg, M. Siebenbürger and M. Ballauff, Thermal convection in a thermosensitive colloidal suspension, New J. Phys. 12 (2010), 053003.10.1088/1367-2630/12/5/053003Search in Google Scholar

[55] S. Messlinger, C. Kramer, J. J. Schmied, F. Winkel, W. Schöpf and I. Rehberg, Experimental observations of Soret-driven convection in the transient diffusive boundary layer, Phys. Rev. E 88 (2013), 053019.10.1103/PhysRevE.88.053019Search in Google Scholar PubMed

[56] M. Italia, F. Croccolo, F. Scheffold and A. Vailati, Inclined layer convection in a colloidal suspension with negative Soret coefficient at large solutal Rayleigh numbers, Eur. Phys. J. E 37 (2014), 101.10.1140/epje/i2014-14101-7Search in Google Scholar PubMed

[57] I. Rehberg and G. Ahlers, Experimental observation of a codimension-two bifurcation in a binary fluid mixture, Phys. Rev. Lett. 55 (1985), 500.10.1103/PhysRevLett.55.500Search in Google Scholar PubMed

[58] P. Kolodner, A. Passner, C. M. Surko and R. W. Walden, Onset of oscillatory convection in a binary fluid mixture, Phys. Rev. Lett. 56 (1986), 2621.10.1103/PhysRevLett.56.2621Search in Google Scholar PubMed

[59] M. I. Shliomis and M. Souhar, Self-oscillatory convection caused by the Soret effect, Europhys. Lett. 49 (2000), 55.10.1209/epl/i2000-00119-4Search in Google Scholar

[60] D. Jung, P. Matura and M. Lücke, Oscillatory convection in binary mixtures: Thermodiffusion, solutal buoyancy, and advection, Eur. Phys. J. E 15 (2004), 293.10.1140/epje/i2004-10069-1Search in Google Scholar PubMed

[61] R. Cerbino, A. Vailati and M. Giglio, Fast-onset Soret-driven convection in a colloidal suspension heated from above, Philos. Mag. 83 (2003), 2023.10.1080/0141861031000108178Search in Google Scholar

[62] J. M. Ortiz de Zárate, F. Peluso and J. V. Sengers, Nonequilibrium fluctuations in the Rayleigh-Benard problem for binary fluid mixtures, Eur. Phys. J. E 15 (2004), 319.10.1140/epje/i2004-10074-4Search in Google Scholar PubMed

[63] S. Mazzoni, R. Cerbino, D. Brogioli, A. Vailati and M. Giglio, Transient oscillations in Soret-driven convection in a colloidal suspension, Eur. Phys. J. E 15 (2004), 305.10.1140/epje/i2004-10070-8Search in Google Scholar PubMed

[64] B. Smorodin and I. Cherepanov, Convection of colloidal suspensions stratified by thermodiffusion and gravity, Eur. Phys. J. E 37 (2014), 118.10.1140/epje/i2014-14118-xSearch in Google Scholar

[65] D. Jung and M. Lücke, Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect, Phys. Rev. Lett. 89 (2002), 054502.10.1103/PhysRevLett.89.054502Search in Google Scholar

[66] G. Zimmermann and U. Müller, Benard convection in a 2-component system with Soret effect, Int. J. Heat Mass Transfer 35 (1992), 2245.10.1016/0017-9310(92)90067-3Search in Google Scholar

[67] W. Schöpf and W. Zimmermann, Convection in binary fluids: Amplitude equations, codimension-2 bifurcation, and thermal fluctuations, Phys. Rev. E 47 (1993), 1739.10.1103/PhysRevE.47.1739Search in Google Scholar

[68] A. Oron and A. A. Nepomnyashchy, Long-wavelength thermocapillary instability with the Soret effect, Phys. Rev. E 69 (2004), 016313.10.1103/PhysRevE.69.016313Search in Google Scholar

[69] S. Shklyaev, A. A. Nepomnyashchy and A. Oron, Three-dimensional oscillatory long-wave Marangoni convection in a binary liquid layer with the Soret effect: Bifurcation analysis, Phys. Fluids 19 (2007), 072105.10.1063/1.2749305Search in Google Scholar

[70] S. Shklyaev, A. A. Nepomnyashchy and A. Oron, Marangoni convection in a binary liquid layer with Soret effect at small Lewis number: Linear stability analysis, Phys. Fluids 21 (2009), 054101.10.1063/1.3127802Search in Google Scholar

[71] J.-F. Dutrieux, G. Chavepeyer, M. Marcoux and M. Massoutie, Onset of Rayleigh-Bénard convection in a ternary liquid system and the Onsager law with generalized thermal diffusion, Philos. Mag. 83 (2003), 2033.10.1080/0141861031000113307Search in Google Scholar

[72] S. Sakurai, Y. Wang, T. Kushiro, T. Nambu and S. Nomura, Convective oscillation in binary and ternary polymer solutions with the Soret effect, Chem. Phys. Lett. 348 (2001), 242.10.1016/S0009-2614(01)01102-2Search in Google Scholar

[73] B. L. Smorodin and B. I. Myznikova, Convective instability of the thermovibrational flow of binary mixture in the presence of the Soret effect, Philos. Mag. 83 (2003), 2155.10.1080/0141861031000107890Search in Google Scholar

[74] Y. Yan, V. Shevtsova and M. Z. Saghir, Numerical study of low frequency g-jitter effect on thermal diffusion, Fluid Dyn. Mater. Process. 1 (2006), 315.Search in Google Scholar

[75] V. Shevtsova, Y. A. Gaponenko, V. Sechenyh, D. E. Melnikov, T. Lyubimova and A. Mialdun, Dynamics of a binary mixture subjected to a temperature gradient and oscillatory forcing, J. Fluid Mech. 767 (2015), 290.10.1017/jfm.2015.50Search in Google Scholar

[76] Y. Yu, C. L. Chan and C. F. Chen, Effect of gravity modulation on the stability of a horizontal double-diffusive layer, J. Fluid Mech. 589 (2007), 183.10.1017/S0022112007007690Search in Google Scholar

[77] Y. P. Razi, K. Maliwan, M. C. Mojtabi and A. Mojtabi, Importance of direction of vibration on the onset of Soret-driven convection under gravity or weightlessness, Eur. Phys. J. E 15 (2004), 335.10.1140/epje/i2004-10072-6Search in Google Scholar PubMed

[78] T. Lyubimova, High-frequency vibration effect on the stability of a horizontal layer of ternary fluid, Eur. Phys. J. E 38 (2015), 43.10.1140/epje/i2015-15043-2Search in Google Scholar PubMed

[79] M. I. Shliomis, B. L. Smorodin and S. Kamiyama, The onset of thermomagnetic convection in stratified ferrofluids, Philos. Mag. 83 (2003), 2139.10.1080/0141861031000107908Search in Google Scholar

[80] J. C. Giddings, A new separation concept based on a coupling of concentration and flow nonuniformities, Sep. Sci. 1 (1966), 123.10.1080/01496396608049439Search in Google Scholar

[81] D. Braun and A. Libchaber, Trapping of DNA by thermophoretic depletion and convection, Phys. Rev. Lett. 89 (2002), 188103.10.1103/PhysRevLett.89.188103Search in Google Scholar PubMed

[82] S. Duhr, S. Arduini and D. Braun, Thermophoresis of DNA determined by microfluidic fluorescence, Eur. Phys. J. E 15 (2004), 277.10.1140/epje/i2004-10073-5Search in Google Scholar PubMed

[83] S. Iacopini and R. Piazza, Thermophoresis in protein solutions, Europhys. Lett. 63 (2003), 247.10.1209/epl/i2003-00520-ySearch in Google Scholar

[84] R. Piazza, S. Iacopini and B. Triulzi, Thermophoresis as a probe of particle-solvent interactions: the case of protein solutions, Phys. Chem. Chem. Phys. 6 (2004), 1616.10.1039/B312856CSearch in Google Scholar

[85] M. Kreysing, L. Keil, S. Lanzmich and D. Braun, Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length, Nat. Chem. 7 (2015), 203.10.1038/nchem.2155Search in Google Scholar PubMed

[86] P. Baaske, F. M. Weinert, S. Duhr, K. H. Lemke, M. J. Russel and D. Braun, Extreme accumulation of nucleotides in simulated hydrothermal pore systems, PNAS 104 (2007), 9346.10.1073/pnas.0609592104Search in Google Scholar PubMed PubMed Central

[87] C. B. Mast and D. Braun, Thermal trap for DNA replication, Phys. Rev. Lett. 104 (2010), 188102.10.1103/PhysRevLett.104.188102Search in Google Scholar PubMed

[88] D. Niether, D. Afanasenkau, J. K. G. Dhont and S. Wiegand, Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases, PNAS 113 (2016), 4272.10.1073/pnas.1600275113Search in Google Scholar PubMed PubMed Central

[89] M. Jerabek-Willemsen, C. J. Wienken, D. Braun, P. Baaske and S. Duhr, Molecular interaction studies using microscale thermophoresis, Assay Drug Dev. Technol. 9 (2011), 342.10.1089/adt.2011.0380Search in Google Scholar PubMed PubMed Central

[90] C. J. Wienken, P. Baaske, U. Rothbauer, D. Braun and S. Duhr, Protein-binding assays in biological liquids using microscale thermophoresis, Nat. Commun. 1 (2010) 100.10.1038/ncomms1093Search in Google Scholar PubMed

[91] M. Pline, J. A. Diez and d. B. Dusenbery, Extremely sensitive thermotaxis of the nematode meloidogyne incognita, J. Nematol. 20 (1988), 605.Search in Google Scholar

[92] A. Bahat, S. R. Caplan and M. Eisenbach, Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range, Plos One 7 (2012), e41915.10.1371/journal.pone.0041915Search in Google Scholar PubMed PubMed Central

[93] P. Debye and A. M. Bueche, Thermal diffusion of polymer solutions, in: Robinson, H. A., ed., High-Polymer Physics, Remsen Press Div, Brooklyn (1948), 497.Search in Google Scholar

[94] C. C. Tanner, The Soret effect. Part 1, Trans. Faraday Soc. 23 (1927), 75.10.1039/tf9272300075Search in Google Scholar

[95] C. C. Tanner, The Soret effect. Part 2, Trans. Faraday Soc. 49 (1953), 611.10.1039/tf9534900611Search in Google Scholar

[96] S. Chapman, On the partial separation by thermal diffusion of gases of equal molecular weight, Philos. Mag. 34 (1917), 146.10.1080/14786440808635687Search in Google Scholar

[97] S. Chapman, The kinetic theory of simple and composite monatomic gases: viscosity, thermal conduction, and diffusion, Proc. Roy. Soc. A 93 (1916), 1.10.1016/B978-0-08-016714-5.50013-0Search in Google Scholar

[98] S. Chapman and F. W. Dootson, A note on thermal diffusion, Philos. Mag. 33 (1917), 248.10.1016/B978-0-08-016714-5.50014-2Search in Google Scholar

[99] G. Blüh and O. Blüh, Untersuchungen über thermische Diffusion in Gasgemischen, Z. Phys. A 90 (1934), 12.10.1007/BF01341835Search in Google Scholar

[100] S. Chapman, The possibility of separating isotopes, Philos. Mag. 38 (1919), 182.10.1080/14786440708635938Search in Google Scholar

[101] K. E. Grew and B. E. Atkins, Thermal diffusion in deuterium mixtures, Proc. Phys. Soc. 48 (1936), 415.10.1088/0959-5309/48/3/308Search in Google Scholar

[102] K. Clusius and G. Dickel, Isolierung des leichten Chlorisotopes mit dem Atomgewicht 34.979 im Trennrohr, Naturwissenschaften 27 (1939), 487.10.1007/BF01489237Search in Google Scholar

[103] W. H. Furry, R. C. Jones and L. Onsager, On the theory of isotope separation by thermal diffusion, Phys. Rev. 55 (1939), 1083.10.1103/PhysRev.55.1083Search in Google Scholar

[104] K. Clusius and G. Dickel, Zur Trennung der Chlorisotope, Naturwissenschaften 27 (1939), 148.10.1007/BF01489129Search in Google Scholar

[105] K. Schäfer and H. Corte, Über die Trennung von o-H2 und p-H2 durch Thermodiffusion im Trennrohr, Naturwissenschaften 33 (1946), 92.10.1007/BF00592120Search in Google Scholar

[106] J. Schirdewahn, A. Klemm and L. Waldmann, Thermodiffusion in D2-HT und anderen Wasserstoffgemischen, Z. Naturforsch. A 16 (1960), 133.10.1515/zna-1961-0201Search in Google Scholar

[107] H. Korsching, Trennung von Benzol und Hexadeuterobenzol durch Thermodiffusion in der Flüssigkeit, Naturwissenschaften 31 (1943), 348.10.1007/BF01475426Search in Google Scholar

[108] H. Korsching and K. Wirtz, Zur Trennung von Flüssigkeitsgemischen im Clusiusschen Trennrohr (Trennung der Zinkisotope), Naturwissenschaften 27 (1939), 367.10.1007/BF01491641Search in Google Scholar

[109] I. Prigogine, L. de Brouckère and R. Buess, Recherches sur la thermodiffusion en phase liquide thermodiffusion de l’eau lourde, Physica 18 (1952), 915.10.1016/S0031-8914(52)80226-5Search in Google Scholar

[110] I. Prigogine, L. de Brouckère and R. Amand, Recherches sur la thermodiffusion en phase liquid, Physica 16 (1950), 577.10.1016/0031-8914(50)90103-0Search in Google Scholar

[111] I. Prigogine, L. de Brouckère and R. Amand, Recherches sur la thermodiffusion en phase liquid, Physica 16 (1950), 851.10.1016/0031-8914(50)90094-2Search in Google Scholar

[112] R. L. Saxton, E. L. Dougherty and H. G. Drickamer, Thermal diffusion in binary liquid mixtures of molecules of simple symmetry, J. Chem. Phys. 22 (1954), 1166.10.1063/1.1740324Search in Google Scholar

[113] W. M. Rutherford and H. G. Drickamer, Theory of thermal diffusion in liquids and the use of pressure to investigate the theory, J. Chem. Phys. 22 (1954), 1157.10.1063/1.1740323Search in Google Scholar

[114] G. Thomaes, Thermal diffusion near the critical solution point, J. Chem. Phys. 25 (1956), 32.10.1063/1.1742842Search in Google Scholar

[115] J. D. Hoffman and B. H. Zimm, Rate of thermal diffusion of polymer molecules in solution, J. Polym. Sci. 15 (1955), 405.10.1002/pol.1955.120158008Search in Google Scholar

[116] A. H. Emery and H. G. Drickamer, Thermal diffusion in polymer solutions, J. Chem. Phys. 23 (1955), 2252.10.1063/1.1740733Search in Google Scholar

[117] A. H. Emery and H. G. Drickamer, Erratum: thermal diffusion in polymer solutions, J. Chem. Phys. 24 (1956), 620.10.1063/1.1742564Search in Google Scholar

[118] K. Nachtigall and G. Meyerhoff, Die messung der diffusionskoeffizienten von hochpolymeren in lösung mit einer konvektionsfreien thermodiffusionszelle, Macromol. Chem. 33 (1959), 85.10.1002/macp.1959.020330106Search in Google Scholar

[119] F. C. Whitmore, Experimental study of thermal diffusion in dilute solutions of high polymers, J. Appl. Phys. 31 (1960), 1858.10.1063/1.1735464Search in Google Scholar

[120] J. S. Ham, Kinetic theory of thermal diffusion in dilute polymer solutions, J. Appl. Phys. 31 (1960), 1853.10.1063/1.1735463Search in Google Scholar

[121] K. Wirtz, Thermodiffusion in Flüssigkeiten, Naturwissenschaften 27 (1939), 369.10.1007/BF01491642Search in Google Scholar

[122] K. Wirtz, Z. Naturforsch. Platzwechselprozesse in Flüssigkeiten. Z. Naturforsch. A 3 (1948), 672.10.1515/zna-1948-1210Search in Google Scholar

[123] K. G. Denbigh, The heat of transport in regular solutions, Trans. Faraday Soc. 48 (1952), 1.10.1039/tf9524800001Search in Google Scholar

[124] E. L. Dougherty Jr and H. G. Drickamer, A theory of thermal diffusion in liquids, J. Chem. Phys. 23 (1955), 295.10.1063/1.1741957Search in Google Scholar

[125] K. F. Alexander, Zur Theorie der Thermodiffusion in Flüssigkeiten. I. Über den Zusammenhang zwischen kinetischer und phänomenologischer Theorie der Transporterscheinungen in kontinuierlichen Systemen, Z. Phys. Chem. 203 (1954), 181.10.1515/zpch-1954-20312Search in Google Scholar

[126] K. F. Alexander, Zur Theorie der Thermodiffusion in Flüssigkeiten. II. Diffusion und Thermodiffusion in binären flüssigen Mischungen und Lösungen, Z. Phys. Chem. 203 (1954), 203.10.1515/zpch-1954-20313Search in Google Scholar

[127] K. F. Alexander, Zur Theorie der Thermodiffusion in Flüssigkeiten. III. Bestimmung der Soretkoeffizienten von verdünnten wässrigen Alkalihalogenidlösungen bei den mittleren Temperaturen, Z. Phys. Chem. 203 (1954), 213.10.1515/zpch-1954-20314Search in Google Scholar

[128] K. F. Alexander, Zur Theorie der Thermodiffusion in Flüssigkeiten. IV. Überführungswärme und Struktur wässriger Elektrolytlösungen, Z. Phys. Chem. 203 (1954), 228.10.1515/zpch-1954-20315Search in Google Scholar

[129] K. F. Alexander, Zur Theorie der Thermodiffusion in Flüssigkeiten. V. Kinetische Theorie der Selbstdiffusion und Selbstthermodiffusion in Wasser, Z. Phys. Chem. 203 (1954), 357.10.1515/zpch-1954-20327Search in Google Scholar

[130] K. F. Alexander, On recent theories of thermal diffusion in liquids, Physica 21 (1955), 446.10.1016/S0031-8914(54)92376-9Search in Google Scholar

[131] L. J. Tichacek, S. W. Kmak and H. G. Drickamer, Thermal diffusion in liquids; the effect of non-ideality and association, J. Phys. Chem. 60 (1956), 660.10.1021/j150539a038Search in Google Scholar

[132] S. Wiegand, Thermal diffusion in liquid mixtures and polymer solutions, J. Phys.: Condens. Matter 16 (2004), R357.10.1088/0953-8984/16/10/R02Search in Google Scholar

[133] R. Piazza and A. Parola, Thermophoresis in colloidal suspensions, J. Phys.: Condens. Matter 20 (2008), 153102.10.1088/0953-8984/20/15/153102Search in Google Scholar

[134] A. Würger, Thermal non-equilibrium transport in colloids, Rep. Prog. Phys. 73 (2010), 126601.10.1088/0034-4885/73/12/126601Search in Google Scholar

[135] B. Hafskjold, Computer simulation of thermal diffusion in binary liquid mixtures, in: Thermal Nonequilibrium Phenomena in Fluid Mixtures, Köhler, W. Wiegand, S. editors, Heidelberg: Springer (2002).Search in Google Scholar

[136] P.-A. Artola and B. Rousseau, Thermal diffusion in simple liquid mixtures: what have we learnt from molecular dynamics simulations? Mol. Phys. 111 (2013), 3394.10.1080/00268976.2013.837534Search in Google Scholar

[137] M. Eslamian and M. Z. Saghir, A critical review of thermodiffusion models: role and significance of the heat of transport and the activation energy of viscous flow, J. Non-Equilib. Thermodyn. 34 (2009), 97.10.1515/JNETDY.2009.007Search in Google Scholar

[138] M. A. Rahman and M. Z. Saghir, Thermodiffusion or Soret effect: historical review, Int. J. Heat Mass Transfer 73 (2014), 693.10.1016/j.ijheatmasstransfer.2014.02.057Search in Google Scholar

[139] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York, 1984.Search in Google Scholar

[140] S. Hartmann, G. Wittko, W. Köhler, K. I. Morozov, K. Albers and G. Sadowski, Thermophobicity of liquids: heats of transport in mixtures as pure component properties, Phys. Rev. Lett. 109 (2012), 065901.10.1103/PhysRevLett.109.065901Search in Google Scholar PubMed

[141] S. Hartmann, G. Wittko, F. Schock, W. Groß, F. Lindner, W. Köhler, et al., Thermophobicity of liquids: heats of transport in mixtures as pure component properties - the case of arbitrary concentration, J. Chem. Phys. 141 (2014), 134503.10.1063/1.4896776Search in Google Scholar PubMed

[142] K. Shukla and A. Firoozabadi, A new model of thermal diffusion coefficients in binary hydrocarbon mixtures, Ind. Eng. Chem. Res. 37 (1998), 3331.10.1021/ie970896pSearch in Google Scholar

[143] K. B. Haugen and A. Firoozabadi, Transient separation of multicomponent liquid mixtures in thermogravitational columns, J. Chem. Phys. 127 (2007), 154507.10.1063/1.2794043Search in Google Scholar PubMed

[144] A. Abbasi, M. Z. Saghir and M. Kawaji, A new approach to evaluate the thermodiffusion factor for associating mixtures, J. Chem. Phys. 130 (2009), 064506.10.1063/1.3076926Search in Google Scholar PubMed

[145] P. Lucas and A. Tyler, Thermal diffusion ratio of a 3He/4He mixture near its λ transition: the onset of heat flush, J. Low Temp. Phys. 27 (1977), 281.10.1007/BF00654650Search in Google Scholar

[146] H. J. V. Tyrrell, Diffusion and Heat Flow in Liquids, Butterworth, London, 1961.Search in Google Scholar

[147] S. Srinivasan and M. Z. Saghir, Experimental approaches to study thermodiffusion - a review, Int. J. Thermal Sci. 50 (2011), 1125.10.1016/j.ijthermalsci.2011.02.022Search in Google Scholar

[148] J. K. Platten, M. M. Bou-Ali, P. Costesèque, J. F. Dutrieux, W. Köhler, C. Leppla, et al., Benchmark values for the Soret, thermal diffusion, and diffusion coefficients of three binary organic liquid mixtures, Philos. Mag. 83 (2003), 1965.10.1080/0141861031000108204Search in Google Scholar

[149] C. Leppla and S. Wiegand, Investigation of the Soret effect in binary liquid mixtures by thermal-diffusion-forced Rayleigh scattering (contribution to the benchmark test), Philos. Mag. 83 (2003), 1989.10.1080/0141861031000108222Search in Google Scholar

[150] G. Wittko and W. Köhler, Precise determination of the Soret-, thermal diffusion, and mass diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphtalene by a holographic grating technique, Philos. Mag. 83 (2003), 1973.10.1080/0141861031000108213Search in Google Scholar

[151] M. M. Bou-Ali, J. J. Valencia, J. A. Madariaga, C. Santamaria, O. Ecenarro and J. F. Dutrieux, Determination of the thermodiffusion coefficient in three binary organic liquid mixtures by the thermogravitational method (contribution of the Universidad del País Vasco, Bilbao, to the benchmark test), Philos. Mag. 83 (2003), 2011.10.1080/0141861031000113299Search in Google Scholar

[152] J. K. Platten, M. M. Bou-Ali and J. F. Dutrieux, Precise determination of the Soret, thermodiffusion and isothermal diffusion coefficients of binary mixtures of dodecane isobutylbenzene and 1,2,3,4-tetrahydronaphthalene (contribution of the University of Mons to the benchmark test), Philos. Mag. 83 (2003), 2001.10.1080/0141861031000108196Search in Google Scholar

[153] P. Costesèque and J.-C. Loubet, Measuring the Soret coefficient of binary hydrocarbon mixtures in packed thermogravitational columns (contribution of Toulouse University to the benchmark test), Philos. Mag. 83 (2003), 2017.10.1080/0141861031000108187Search in Google Scholar

[154] A. Mialdun and V. Shevtsova, Measurement of the Soret and diffusion coefficients for benchmark binary mixtures by means of digital interferometry, J. Chem. Phys. 134 (2011), 044524.10.1063/1.3546036Search in Google Scholar PubMed

[155] A. Königer, B. Meier and W. Köhler, Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol/water mixtures using a beam deflection technique, Philos. Mag. 89 (2009), 907.10.1080/14786430902814029Search in Google Scholar

[156] P. Naumann, A. Martin, H. Kriegs, M. Larrañaga, M. M. Bou-Ali and S. Wiegand, Development of a thermogravitational microcolumn with an interferometric contactless detection system, J. Phys. Chem. B 116 (2012), 13889.10.1021/jp3098473Search in Google Scholar PubMed

[157] P. Blanco, M. M. Bou-Ali, J. K. Platten, D. A. de Mezquia, J. A. Madariaga and C. Santamaria, Thermodiffusion coefficients of binary and ternary hydrocarbon mixtures, J. Chem. Phys. 132 (2010), 114506.10.1063/1.3354114Search in Google Scholar PubMed

[158] S. VanVaerenbergh, S. Srinivasan and M. Z. Saghir, Thermodiffusion in multicomponent hydrocarbon mixtures: experimental investigations and computational analysis, J. Chem. Phys. 131 (2009), 114505.10.1063/1.3211303Search in Google Scholar PubMed

[159] A. Leahy-Dios, M. Bou-Ali, J. K. Platten and A. Firoozabadi, Measurements of molecular and thermal diffusion coefficients in ternary mixtures, J. Chem. Phys. 122 (2005), 234502.10.1063/1.1924503Search in Google Scholar PubMed

[160] A. Königer, H. Wunderlich and W. Köhler, Measurement of diffusion and thermal diffusion in ternary fluid mixtures using a two-color optical beam deflection technique, J. Chem. Phys. 132 (2010), 174506.10.1063/1.3421547Search in Google Scholar PubMed

[161] M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaria and J. J. Valencia, Thermogravitational measurement of the Soret coefficient of liquid mixtures, J. Phys.: Condens. Matter 10 (1998), 3321.10.1088/0953-8984/10/15/009Search in Google Scholar

[162] M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaria and J. J. Valencia, Soret coefficient of some binary liquid mixtures, J. Non-Equilib. Thermodyn. 24 (1999), 228.10.1515/JNETDY.1999.013Search in Google Scholar

[163] J. K. Platten, M. M. Bou-Ali and J. F. Dutrieux, Enhanced molecular separation in inclined thermogravitational columns, J. Phys. Chem. B 107 (2003), 11763.10.1021/jp034780kSearch in Google Scholar

[164] M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaria and J. J. Valencia, Measurement of negative Soret coefficients in a vertical fluid layer with an adverse density gradient, Phys. Rev. E 62 (2000), 1420.10.1103/PhysRevE.62.1420Search in Google Scholar

[165] J. Valencia, M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga and C. M. Santamaria, Validity limits of the FJO thermogravitational column technique, in: Thermal Nonequilibrium Phenomena in Fluid Mixtures, Köhler, W., Wiegand, S. editors, Heidelberg: Springer (2002), 233.10.1007/3-540-45791-7_12Search in Google Scholar

[166] K. B. Haugen and A. Firoozabadi, On the unsteady-state species separation of a binary liquid mixture in a rectangular thermogravitational column, J. Chem. Phys. 124 (2006), 054502.10.1063/1.2150431Search in Google Scholar PubMed

[167] A. Mialdun, V. Yasnou, V. Shevtsova, A. Königer, W. Köhler, D. A. de Mezquia, et al., A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of water-isopropanol mixtures, J. Chem. Phys. 136 (2012), 244512.10.1063/1.4730306Search in Google Scholar PubMed

[168] J. F. Dutrieux, J. K. Platten and G. Chavepeyer, M. M. Bou-Ali, On the measurement of positive Soret coefficients, J. Phys. Chem. B 106 (2002), 6104.10.1021/jp013945rSearch in Google Scholar

[169] P. Urteaga, M. M. Bou-Ali, D. A. de Mezquia, J. Santamaria, C. Santamaria, J. A. Madariaga, et al., Measurement of thermodiffusion coefficient of hydrocarbon binary mixtures under pressure with the thermogravitational technique, Rev. Sci. Instrum. 83 (2012), 074903.10.1063/1.4737628Search in Google Scholar PubMed

[170] F. Montel, New tools for oil and gas reservoir fluid management, Rev. Inst. Fr. Pet. 53 (1998), 9.10.2516/ogst:1998002Search in Google Scholar

[171] O. Ecenarro, J. A. Madariaga, J. L. Navarro, C. M. Santamaria, J. A. Carrion and J. M. Saviron, Thermogravitational separation and the thermal diffusion factor near critical points in binary liquid mixtures, J. Phys.: Condens. Matter 5 (1993), 2289.10.1088/0953-8984/5/15/002Search in Google Scholar

[172] D. A. De Mezquia, M. M. Bou-Ali, M. Larrañaga, J. A. Madariaga and C. Santamaria, Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations, J. Phys. Chem. B 116 (2012), 2814.10.1021/jp209838mSearch in Google Scholar PubMed

[173] P. Costesèque, S. Gaillard, Y. Gachet and P. Jamet, Determination of the apparent negative Soret coefficient of water-10% alcohol solutions by experimental and numerical methods in packed cells, Philos. Mag. 83 (2003), 2039.10.1080/0141861031000107999Search in Google Scholar

[174] M. C. Charrier-Mojtabi, B. Elhajjar, B. Ouattara, A. Mojtabi and P. Costesèque, Soret-driven convection and separation of binary mixtures in a porous horizontal slot submitted to a heat flux, C. R. Mec. 339 (2011), 303.10.1016/j.crme.2011.03.006Search in Google Scholar

[175] B. Elhajjar, A. Mojtabi, P. Costesèque and M.-C. Charrier-Mojtabi, Separation in an inclined porous thermogravitational cell, Int. J. Heat Mass Transfer 53 (2010), 4844.10.1016/j.ijheatmasstransfer.2010.06.008Search in Google Scholar

[176] J. A. Bierlein, A phenomenological theory of the Soret diffusion, J. Chem. Phys. 23 (1955), 10.10.1063/1.1740504Search in Google Scholar

[177] G. Meyerhoff and K. Nachtigall, Diffusion, thermodiffusion, and thermal diffusion of polystyrene in solution, J. Polym. Sci. 57 (1962), 227.10.1002/pol.1962.1205716518Search in Google Scholar

[178] G. Meyerhoff, H. Lütje and B. Rauch, Zur Methodik thermischer Diffusionsmessungen von Makromolekülen in Lösung, Macromol. Chem. 44 (1961), 489.10.1002/macp.1961.020440140Search in Google Scholar

[179] P. N. Snowdon and J. C. R. Turner, The Soret effect in some 0.01 normal aqueous electrolytes, Trans. Faraday Soc. 56 (1960), 1409.10.1039/TF9605601409Search in Google Scholar

[180] W. A. Hawksworth, A. J. Stiff and C. D. Wood, Thermal diffusion studies in dilute aqueous and non-aqueous electrolyte solutions, Electrochim. Acta 22 (1977), 1065.10.1016/0013-4686(77)85020-2Search in Google Scholar

[181] P. Kolodner, H. Williams and C. Moe, Optical measurement of the Soret coefficient of ethanol/water solutions, J. Chem. Phys. 88 (1988), 6512.10.1063/1.454436Search in Google Scholar

[182] M. Giglio and A. Vendramini, Thermal diffusion measurements near a consolute critical point, Phys. Rev. Lett. 34 (1975), 561.10.1103/PhysRevLett.34.561Search in Google Scholar

[183] K. J. Zhang, M. E. Briggs, R. W. Gammon and J. V. Sengers, Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures, J. Chem. Phys. 104 (1996), 6881.10.1063/1.471355Search in Google Scholar

[184] M. Gebhardt, W. Köhler, A. Mialdun, V. Yasnou and V. Shevtsova, Diffusion, thermal diffusion, and Soret coefficients, and optical contrast factors of the binary mixtures of dodecane, isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene, J. Chem. Phys. 138 (2013), 114503.10.1063/1.4795432Search in Google Scholar PubMed

[185] R. Piazza and A. Guarino, Soret effect in interacting micellar solutions, Phys. Rev. Lett. 88 (2002), 208302.10.1103/PhysRevLett.88.208302Search in Google Scholar PubMed

[186] R. Piazza, Thermal diffusion in ionic micellar solutions, Philos. Mag. 83 (2003), 2067.10.1080/0141861031000107971Search in Google Scholar

[187] D. Vigolo, G. Brambilla and R. Piazza, Thermophoresis of microemulsion droplets: size dependence of the Soret effect, Phys. Rev. E 75 (2007), 040401.10.1103/PhysRevE.75.040401Search in Google Scholar PubMed

[188] M. Giglio and A. Vendramini, Soret-type motion of macromolecules in solution, Phys. Rev. Lett. 38 (1977), 26.10.1103/PhysRevLett.38.26Search in Google Scholar

[189] K. J. Zhang, M. E. Briggs, R. W. Gammon, J. V. Sengers and J. F. Douglas, Thermal and mass diffusion in a semi-dilute good solvent polymer solution, J. Chem. Phys. 111 (1999), 2270.10.1063/1.479498Search in Google Scholar

[190] S. Wongsuwarn, D. Vigolo, R. Cerbino, A. M. Howe, A. Vailati, R. Piazza, et al., Giant thermophoresis of poly(N-isopropylacrylamide) microgel particles, Soft Matter 8 (2012), 5857–5863.10.1039/c2sm25061fSearch in Google Scholar

[191] A. Königer, N. Plack, W. Köhler, M. Siebenbürger and M. Ballauff, Thermophoresis of thermoresponsive polystyrene-poly(n-isopropylacrylamide) core-shell particles, Soft Matter 9 (2013), 1418.10.1039/C2SM27417ESearch in Google Scholar

[192] S. A. Putnam and D. G. Cahill, Micron-scale apparatus for measurement of thermodiffusion in liquids, Rev. Sci. Instrum. 75 (2004), 2368.10.1063/1.1765761Search in Google Scholar

[193] S. A. Putnam, D. G. Cahill and G. C. L. Wong, Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles, Langmuir 23 (2007), 9221.10.1021/la700489eSearch in Google Scholar PubMed

[194] K. B. Haugen and A. Firoozabadi, On measurement of molecular and thermal diffusion coefficients in multicomponent mixtures, J. Phys. Chem. B 110 (2006), 17678.10.1021/jp062382mSearch in Google Scholar PubMed

[195] M. Gebhardt and W. Köhler, What can be learned from optical two-color diffusion and thermodiffusion experiments on ternary fluid mixtures? J. Chem. Phys. 142 (2015), 084506.10.1063/1.4908538Search in Google Scholar PubMed

[196] A. Mialdun, J.-C. Legros, V. Yasnou, V. Sechenyh and V. Shevtsova, Contribution to the benchmark for ternary mixtures: measurement of the Soret, diffusion and thermodiffusion coefficients in the ternary mixture THN/IBB/nC12 with 0.8/0.1/0.1 mass fractions in ground and orbital laboratories, Eur. Phys. J. E 38 (2015), 27.10.1140/epje/i2015-15027-2Search in Google Scholar PubMed

[197] A. Mialdun and V. Shevtsova, Development of optical digital interferometry technique for measurement of thermodiffusion coefficients, Int. J. Heat Mass Transfer 51 (2008), 3164.10.1016/j.ijheatmasstransfer.2007.08.020Search in Google Scholar

[198] A. Mialdun and V. Shevtsova, Digital interferometry as a powerful tool to study the thermodiffusion effect, C. R. Mec. 339 (2011), 362.10.1016/j.crme.2011.04.001Search in Google Scholar

[199] A. Mialdun, C. Minetti, Y. Gaponenko, V. Shevtsova and F. Dubois, Analysis of the thermal performance of SODI instrument for dcmix configuration, Microgravity Sci. Technol. 25 (2013), 83.10.1007/s12217-012-9337-2Search in Google Scholar

[200] V. Shevtsova, I. Ryzkhov, D. E. Melnikov, A. Mialdun, and Y. A. Gaponenko, Experimental and theoretical study of vibration-induced thermal convection in low gravity, J. Fluid Mech. 648 (2010), 53.10.1017/S0022112009993442Search in Google Scholar

[201] Y. Gaponenko, A. Mialdun and V. Shevtsova. Experimental and numerical analysis of mass transfer in a binary mixture with Soret effect in the presence of weak convection, Eur. Phys. J. E 37 (2014), 90.10.1140/epje/i2014-14090-5Search in Google Scholar PubMed

[202] V. Shevtsova, A. Mialdun, D. Melnikov, I. Ryzhkov, Y. Gaponenko, Z. Saghir, et al., The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations, C. R. Mec. 339 (2011), 310.10.1016/j.crme.2011.03.007Search in Google Scholar

[203] J. F. Torres, A. Komiya, D. Henry and S. Maruyama, Measurement of soret and fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions, J. Chem. Phys. 139 (2013), 074203.10.1063/1.4817682Search in Google Scholar PubMed

[204] P. Costesèque, T. Pollak, J. K. Platten and M. Marcoux, Transient-state method for coupled evaluation of Soret and Fick coefficients, and related tortuosity factors, using free and porous packed thermodiffusion cells: Application to CuSO4 aqueous solution (0.25 M), Eur. Phys. J. E 15 (2004), 249.10.1140/epje/i2004-10064-6Search in Google Scholar PubMed

[205] C. Giraudet, F. Croccolo, G. Galliero, G. Pijaudier-Cabot, S. V. Vaerenbergh, M. Z. Saghir, et al., Thermodiffusion of the tetrahydronaphthalene and dodecane mixture under high pressure and in porous medium, C. R. Mec. 341 (2013), 340.10.1016/j.crme.2013.01.007Search in Google Scholar

[206] C. G. Jiang, T. J. Jaber, H. Bataller and M. Z. Saghir, Simulation of Ludwig-Soret effect of a water-ethanol mixture in a cavity filled with aluminum oxide powder under high pressure, Int. J. Thermal Sci. 47 (2008), 126.10.1016/j.ijthermalsci.2007.01.019Search in Google Scholar

[207] G. Thomaes, Thermodiffusion en phase condensée. Nouveau dispositif expérimental pour la mesure du coefficient de Soret, J. Chim. Phys. 53 (1956), 407.10.1051/jcp/1956530407Search in Google Scholar

[208] P. Poty, J. C. Legros and G. Thomaes, Thermal diffusion in some binary liquid mixtures by the flow cell method, Z. Naturforsch. 29A (1974), 1915.10.1515/zna-1974-1232Search in Google Scholar

[209] B. D. Butler and J. C. R. Turner. Flow-cell studies of thermal diffusion in liquids. Part 1. – Cell construction and calibration, Trans. Faraday Soc. 62 (1966), 3114.10.1039/TF9666203114Search in Google Scholar

[210] B. D. Butler and J. C. R. Turner. Flow-cell studies of thermal diffusion in liquids. Part 2. – Phenomenological equations and their solution, Trans. Faraday Soc. 62 (1966), 3121.10.1039/TF9666203121Search in Google Scholar

[211] J. C. R. Turner, B. D. Butler and M. J. Story, Flow-cell studies of thermal diffusion in liquids. Part 3. – The CCl4 + cyclohexane system, Trans. Faraday Soc. 63 (1967), 1906.10.1039/TF9676301906Search in Google Scholar

[212] M. J. Story and J. C. R. Turner, Flow-cell studies of thermal diffusion in liquids. Part 5. – Binary mixtures of CH3OH with CCl4, benzene and cyclohexane at 25°C, Trans. Faraday Soc. 65 (1969), 1523.10.1039/TF9696501523Search in Google Scholar

[213] M. J. Story and J. C. R. Turner, Flow-cell studies of thermal diffusion in liquids. Part 4. CCl4+benzene and cyclohexane+benzene systems, Trans. Faraday Soc. 65 (1969), 349.10.1039/TF9696500349Search in Google Scholar

[214] G. Chavepeyer, J.-F. Dutrieux, S. V. Vaerenbergh and J.-C. Legros, A survey of the Thomaes flow cell method for the Soret coefficient, in: Thermal Nonequilibrium Phenomena in Fluid Mixtures, Köhler, W. and Wiegand, S. editors, Heidelberg: Springer (2002), 211.10.1007/3-540-45791-7_11Search in Google Scholar

[215] W.-S. Kim, Y. H. Park, M. H. Moon, E. K. Yu and D. W. Lee, Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation, Bull. Korean Chem. Soc. 19 (1998), 868.Search in Google Scholar

[216] W. Hiller, W. van Aswegen, M. Hehn and H. Pasch, Online ThFFF–NMR: a novel tool for molar mass and chemical composition analysis of complex macromolecules, Macromolecules 46 (2013), 2544.10.1021/ma400350ySearch in Google Scholar

[217] G. H. Thompson, M. N. Myers and J. C. Giddings, Thermal field-flow fractionation of polystyrene samples, Anal. Chem. 41 (1969), 1219.10.1021/ac60279a001Search in Google Scholar

[218] W. Luo, T. Du and J. Huang, Novel convective instabilities in a magnetic fluid, Phys. Rev. Lett. 82 (1999), 4134.10.1103/PhysRevLett.82.4134Search in Google Scholar

[219] J. J. Kirkland and W. W. Yau, Thermal field-flow fractionation of polymers with exponential temperature programming, Macromolecules 18 (1985), 2305.10.1021/ma00153a045Search in Google Scholar

[220] J. C. Giddings, K. D. Caldwell and M. N. Myers, Thermal diffusion of polystyrene in eight solvents by an improved thermal field-flow fractionation methodology, Macromolecules 9 (1976), 106.10.1021/ma60049a021Search in Google Scholar

[221] M. E. Schimpf and J. C. Giddings, Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: Dependence of polymer and solvent parameters, J. Polym. Sci., Part B: Polym. Phys. 27 (1989), 1317.10.1002/polb.1989.090270610Search in Google Scholar

[222] J. C. Giddings, M. N. Myers and J. Janca, Retention characteristics of various polymers in thermal field-flow fractionation, J. Chromatogr. 186 (1979), 37.10.1016/S0021-9673(00)95235-XSearch in Google Scholar

[223] S. L. Brimhall, M. N. Myers, K. D. Caldwell and J. C. Giddings, Study of temperature dependence of thermal diffusion in polystyrene/ethylbenzene by thermal field-flow fractionation, J. Polym. Sci., Part B: Polym. Phys. 23 (1985), 2443.10.1002/pol.1985.180231203Search in Google Scholar

[224] M. E. Schimpf and J. C. Giddings, Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: effects of molecular weight and branching, Macromolecules 20 (1987), 1561.10.1021/ma00173a022Search in Google Scholar

[225] M. E. Schimpf and J. C. Giddings, Characterization of thermal diffusion of copolymers in solution by thermal field-flow fractionation, J. Polym. Sci., Part B: Polym. Phys. B28 (1990), 2673.10.1002/polb.1990.090281313Search in Google Scholar

[226] M. Martin and R. Reynaud, Polymer analysis by thermal field-flow fractionation, Anal. Chem. 52 (1980), 2293.10.1021/ac50064a014Search in Google Scholar

[227] J. J. Gunderson and J. C. Giddings, Comparison of polymer resolution in thermal field-flow fractionation and size exclusion chromatography, Anal. Chim. Acta 189 (1986), 1.10.1016/S0003-2670(00)83710-1Search in Google Scholar

[228] J. Janca and K. Kleparnik, Determination of molecular weight distribution of polymers by thermal field-flow fractionation, Sep. Sci. Technol. 16 (1981), 657.10.1080/01496398108058121Search in Google Scholar

[229] K. A. Eslahian and M. Maskos, Hofmeister effect in thermal field-flow fractionation of colloidal aqueous dispersions, Colloids Surf. A 413 (2012), 65.10.1016/j.colsurfa.2012.02.003Search in Google Scholar

[230] M. Antonietti, A. Briel and C. Tank, Chromatographic characterization of complex polymer systems with thermal field-flow fractionation, Acta Polymer 46 (1995), 254.10.1002/actp.1995.010460307Search in Google Scholar

[231] J. Janca, Micro-thermal field-flow fractionation: new challenge in experimental studies of thermal diffusion of polymers and colloidal particles, Philos. Mag. 83 (2003), 2045.10.1080/0141861031000107953Search in Google Scholar

[232] J. Janca, I. A. Ananieva, J. Sobota and J. Dupak, Ultra-micro-thermal field-flow fractionation, Int. J. Polym. Anal. Char. 13 (2008), 232.10.1080/10236660802070595Search in Google Scholar

[233] H. Cölfen and M. Antonietti, Field-flow fractionation techniques for polymer and colloid analysis, in: New Developments in Polymer Analytics I, Schmidt, M. editors, volume 150 of Advances in Polymer Science, Berlin, Heidelberg: Springer (2000), 67.10.1007/3-540-48764-6_2Search in Google Scholar

[234] H. J. Eichler, P. Guenther and D. W. Pohl, Laser-Induced Dynamic Gratings, Berlin, Springer, 1986.10.1007/978-3-540-39662-8Search in Google Scholar

[235] D. W. Pohl, S. E. Schwarz and V. Irniger, Forced Rayleigh scattering, Phys. Rev. Lett. 31 (1973), 32.10.1103/PhysRevLett.31.32Search in Google Scholar

[236] K. Thyagarajan and P. Lallemand, Determination of the thermal diffusion ratio in a binary mixture by forced Rayleigh scattering, Opt. Commun. 26 (1978), 54.10.1016/0030-4018(78)90340-1Search in Google Scholar

[237] D. W. Pohl, First stage of spinodal decomposition observed by forced Rayleigh scattering, Phys. Lett. A 77 (1980), 53.10.1016/0375-9601(80)90634-9Search in Google Scholar

[238] W. Köhler, Thermodiffusion in polymer solutions as observed by forced Rayleigh scattering, J. Chem. Phys. 98 (1993), 660.10.1063/1.464610Search in Google Scholar

[239] M. Niwa, Y. Ohta and Y. Nagasaka, Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method, J. Chem. Eng. Data 54 (2009), 2708.10.1021/je900242eSearch in Google Scholar

[240] S. Wiegand, H. Ning and H. Kriegs, Thermal diffusion forced Rayleigh scattering setup optimized for aqueous mixtures, J. Phys. Chem. B 111 (2007), 14169.10.1021/jp076913ySearch in Google Scholar PubMed

[241] W. Enge and W. Köhler, Thermal diffusion in a critical polymer blend, Phys. Chem. Chem. Phys. 6 (2004), 2373.10.1039/B401087FSearch in Google Scholar

[242] W. Köhler and P. Rossmanith, Aspects of thermal diffusion forced Rayleigh scattering: heterodyne detection, active phase tracking and experimental constraints, J. Phys. Chem. 99 (1995), 5838.10.1021/j100016a018Search in Google Scholar

[243] W. Köhler and B. Müller, Soret and mass diffusion coefficients of toluene/n-hexane mixtures, J. Chem. Phys. 103 (1995), 4367.10.1063/1.470677Search in Google Scholar

[244] G. Wittko and W. Köhler, On the temperature dependence of thermodiffusion of liquid mixtures, Europhys. Lett. 78 (2007), 46007.10.1209/0295-5075/78/46007Search in Google Scholar

[245] B. J. de Gans, R. Kita, S. Wiegand and J. Luettmer-Strathmann, Unusual thermal diffusion in polymer solutions, Phys. Rev. Lett. 91 (2003), 245501.10.1103/PhysRevLett.91.245501Search in Google Scholar PubMed

[246] H. Ning and S. Wiegand, Experimental investigation of the Soret effect in acetone/water and dimethylsulfoxide/water mixtures, J. Chem. Phys. 125 (2006), 221102.10.1063/1.2402159Search in Google Scholar PubMed

[247] M. Klein and S. Wiegand, The Soret effect of mono-, di- and tri-glycols in ethanol, Phys. Chem. Chem. Phys. 13 (2011), 7090.10.1039/c1cp00022eSearch in Google Scholar PubMed

[248] D. A. Alonso de Mezquia, Z. Wang, E. Lapeira, M. Klein, S. Wiegand and M. Mounir Bou-Ali, Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene fluids, Eur. Phys. J. E 37 (2014), 106.10.1140/epje/i2014-14106-2Search in Google Scholar PubMed

[249] K. Maeda, N. Shinyashiki, S. Yagihara, S. Wiegand, and R. Kita, How does thermodiffusion of aqueous solutions depend on concentration and hydrophobicity? Eur. Phys. J. E 37 (2014), 94.10.1140/epje/i2014-14094-1Search in Google Scholar PubMed

[250] Y. Kishikawa, H. Shinohara, K. Maeda, Y. Nakamura, S. Wiegand and R. Kita, Temperature dependence of thermal diffusion for aqueous solutions of monosaccharides, oligosaccharides, and polysaccharides, Phys. Chem. Chem. Phys. 14 (2012), 10147.10.1039/c2cp41183kSearch in Google Scholar PubMed

[251] C. Debuschewitz and W. Köhler, Molecular origin of thermal diffusion in benzene+cyclohexane mixtures, Phys. Rev. Lett. 87 (2001), 055901.10.1103/PhysRevLett.87.055901Search in Google Scholar PubMed

[252] P. Polyakov and S. Wiegand, Systematic study of the thermal diffusion in associated mixtures, J. Chem. Phys. 128 (2008), 034505.10.1063/1.2819672Search in Google Scholar PubMed

[253] Z. Wang, H. Kriegs and S. Wiegand, Thermal diffusion of nucleotides, J. Phys. Chem. B 116 (2012), 7463.10.1021/jp3032644Search in Google Scholar PubMed

[254] H. Ning, R. Kita, H. Kriegs, J. Luettmer-Strathmann and S. Wiegand, Thermal diffusion behavior of nonionic surfactants in water, J. Phys. Chem. B 110 (2006), 10746.10.1021/jp0572986Search in Google Scholar PubMed

[255] J. Rauch and W. Köhler, Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene, J. Chem. Phys. 119 (2003), 11977.10.1063/1.1623745Search in Google Scholar

[256] J. Rauch and W. Köhler, Diffusion and thermal diffusion of semidilute to concentrated solutions of polystyrene in toluene in the vicinity of the glass transition, Phys. Rev. Lett. 88 (2002), 185901.10.1103/PhysRevLett.88.185901Search in Google Scholar PubMed

[257] J. Rauch and W. Köhler, On the molar mass dependence of the thermal diffusion coefficient of polymer solutions, Macromolecules 38 (2005), 3571.10.1021/ma050231wSearch in Google Scholar

[258] J. Rauch, M. Hartung, A. F. Privalov and W. Köhler, Correlation between thermal diffusion and solvent self diffusion in semidilute and concentrated polymer solutions, J. Chem. Phys. 126 (2007), 214901.10.1063/1.2738467Search in Google Scholar PubMed

[259] D. Stadelmaier and W. Köhler, From small molecules to high polymers: investigation of the crossover of thermal diffusion in dilute polystyrene solutions, Macromolecules 41 (2008), 6205.10.1021/ma800891pSearch in Google Scholar

[260] D. Stadelmaier and W. Köhler, Thermal diffusion of dilute polymer solutions: the role of chain flexibility and the effective segment size, Macromolecules 42 (2009), 9147.10.1021/ma901794kSearch in Google Scholar

[261] B.-J. de Gans, R. Kita, B. Müller and S. Wiegand, Negative thermodiffusion of polymers and colloids in solvent mixtures, J. Chem. Phys. 118 (2003), 8073.10.1063/1.1563601Search in Google Scholar

[262] R. Kita, S. Wiegand and J. Luettmer-Strathmann, Sign change of Soret coefficient of poly(ethylene oxide) in water/ethanol mixtures observed by TDFRS, J. Chem. Phys. 121 (2004), 3874.10.1063/1.1771631Search in Google Scholar PubMed

[263] R. Kita, G. Kircher and S. Wiegand, Thermally induced sign change of Soret coefficient for dilute and semidilute solutions of poly(N-isopropylacrylamide) in ethanol, J. Chem. Phys. 121 (2004), 9140–9146.10.1063/1.1803535Search in Google Scholar PubMed

[264] R. Kita and S. Wiegand, Soret coefficient of poly(N-isopropylacrylamide)/water in the vicinity of coil-globule transition temperature, Macromolecules 38 (2005), 4554–4556.10.1021/ma050526+Search in Google Scholar

[265] R. Kita, P. Polyakov and S. Wiegand, Ludwig-Soret effect of poly(N-isopropylacrylamide): Temperature dependence study in monohydric alcohols, Macromolecules 40 (2007), 1638–1642.10.1021/ma0621831Search in Google Scholar

[266] H. Ning, J. Buitenhuis, J. K. G. Dhont and S. Wiegand, Thermal diffusion behavior of hard-sphere suspensions, J. Chem. Phys. 125 (2006), 204911.10.1063/1.2400860Search in Google Scholar PubMed

[267] P. Rossmanith and W. Köhler, Polymer polydispersity analysis by thermal diffusion forced Rayleigh scattering, Macromolecules 29 (1996), 3203.10.1021/ma9516302Search in Google Scholar

[268] W. Köhler and R. Schäfer, Polymer analysis by thermal-diffusion forced Rayleigh scattering, Adv. Polym. Sci. 151 (2000), no. II, 1.10.1007/3-540-48763-8_1Search in Google Scholar

[269] R. Schäfer, A. Becker and W. Köhler, Stochastic thermal diffusion forced Rayleigh scattering, Int. J. Thermophys. 20 (1999), 1.10.1023/A:1021461726559Search in Google Scholar

[270] S. Takagi and H. Tanaka, Phase-coherent Rayleigh scattering method: application to thermal diffusion mode, Rev. Sci. Instrum. 73 (2002), 3337.10.1063/1.1497495Search in Google Scholar

[271] G. Demouchy, A. Mezulis, A. Bee, D. Talbot, J. C. Bacri and A. Bourdon, Diffusion and thermodiffusion studies in ferrofluids with a new two-dimensional forced Rayleigh-scattering technique, J. Phys. D: Appl. Phys. 37 (2004), 1417.10.1088/0022-3727/37/10/002Search in Google Scholar

[272] M. Hartung and W. Köhler, An optical cell with periodic resistive heating for the measurement of heat, mass and thermal diffusion in liquid mixtures, Rev. Sci. Instrum. 78 (2007), 084901.10.1063/1.2764371Search in Google Scholar

[273] N. Arnaud and J. Georges, On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions, Anal. Chim. Acta 445 (2001), 239.10.1016/S0003-2670(01)01260-0Search in Google Scholar

[274] N. Anraud and J. Georges, Investigation of the thermal lens effect in water-ethanol mixtures: composition dependence of the refractive index gradient, the enhancement factor and the Soret effect, Spectrochim. Acta A 57 (2001), 1295.10.1016/S1386-1425(00)00465-0Search in Google Scholar

[275] S. Alves, A. Bourdon and A. M. F. Neto, Generalization of the thermal lens model fromalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient, J. Opt. Soc. Am. B 20 (2003), 713.10.1364/JOSAB.20.000713Search in Google Scholar

[276] P. Polyakov and S. Wiegand, Investigation of the Soret effect in aqueous and non-aqueous mixtures by the thermal lens technique, Phys. Chem. Chem. Phys. 11 (2009), 864.10.1039/B810860ASearch in Google Scholar

[277] N. Arnaud and J. Georges, Thermal lens spectometry in aqueous solutions of Brij 35: Investigation of micelle effects on the time-resolved and steady-state signals, Spectrochim. Acta A 57 (2001), 1085.10.1016/S1386-1425(00)00425-XSearch in Google Scholar

[278] R. Rusconi, L. Isa and R. Piazza, Thermal-lensing measurement of particle thermophoresis in aqueous dispersions, J. Opt. Soc. Am. B 21 (2004), 605.10.1364/JOSAB.21.000605Search in Google Scholar

[279] J. Georges, Investigation of the diffusion coefficient of polymers and micelles in aqueous solution using the Soret effect in cw-laser thermal lens spectrometry, Spectrochim. Acta A 59 (2003), 519.10.1016/S1386-1425(02)00186-5Search in Google Scholar

[280] S. Alves, G. Demouchy, A. Bee, D. Talbot, A. Bourdon and A. M. F. Neto, Investigation of the sign of the Soret coefficient in different ionic and surfacted magnetic colloids using forced Rayleigh scattering and single-beam Z-scan techniques, Philos. Mag. 83 (2003), 2059.10.1080/0141861031000107962Search in Google Scholar

[281] F. D. Hardcastle and J. M. Harris, Thermal lens absorption measurements in binary liquid mixtures near the consolute critical point, Appl. Spectrosc. 40 (1986), 606.10.1366/0003702864508692Search in Google Scholar

[282] P. N. Segre, R. W. Gammon and J. V. Sengers, Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture, Phys. Rev. E 47 (1993), 1026.10.1103/PhysRevE.47.1026Search in Google Scholar

[283] W. B. Li, P. N. Segre, J. V. Sengers and R. W. Gammon, Non-equilibrium fluctuations in liquids and liquid mixtures subjected to a stationary temperature gradient, J. Phys.: Condens. Matter 6 (1994), A119.10.1088/0953-8984/6/23A/014Search in Google Scholar

[284] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon and J. M. Ortiz de Zárate, Concentration fluctuations in a polymer solution under a temperature gradient, Phys. Rev. Lett. 81 (1998), 5580.10.1103/PhysRevLett.81.5580Search in Google Scholar

[285] W. B. Li, K. J. Zhang, J. V. Sengers and R. W. Gammon, Light scattering from nonequilibrium concentration fluctuations in a polymer solution, J. Chem. Phys. 112 (2000), 9139.10.1063/1.481524Search in Google Scholar

[286] C. Giraudet, H. Bataller and F. Croccolo, High-pressure mass transport properties measured by dynamic near-field scattering of non-equilibrium fluctuations, Eur. Phys. J. E 37 (2014), 107.10.1140/epje/i2014-14107-1Search in Google Scholar

[287] A. Vailati and M. Giglio, q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture, Phys. Rev. Lett. 77 (1996), 1484.10.1103/PhysRevLett.77.1484Search in Google Scholar

[288] J. M. Ortiz de Zárate, R. P. Cordon and J. V. Sengers, Finite-size effects on fluctuations in a fluid out of thermal equilibrium, Phys. A 291 (2001), 113.10.1016/S0378-4371(00)00484-2Search in Google Scholar

[289] F. Croccolo, H. Bataller and F. Scheffold, Static versus dynamic analysis of the influence of gravity on concentration non-equilibrium fluctuations, Eur. Phys. J. E 37 (2014), 105.10.1140/epje/i2014-14105-3Search in Google Scholar PubMed

[290] A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, C. J. Takacs and D. S. Cannell, Gradient-driven fluctuations in microgravity, J. Phys.: Condens. Matter 24 (2012), 284134.10.1088/0953-8984/24/28/284134Search in Google Scholar PubMed

[291] D. A. de Mezquia, M. M. Bou-Ali, J. A. Madariaga and C. Santamaria, Mass effect on the Soret coefficient in n-alkane mixtures, J. Chem. Phys. 140 (2014), 084503.10.1063/1.4865936Search in Google Scholar PubMed

[292] J. Demichowicz-Pigoniowa, M. Mitchell and H. J. V. Tyrrell, Thermal diffusion in the n-heptane-benzene system at 25°C, J. Chem. Soc. A. 0 (1971), 307.10.1039/J19710000307Search in Google Scholar

[293] T. G. Anderson and F. H. Horne, Pure thermal diffusion. II. Experimental thermal diffusion factors and mutual diffusion coefficients for CCl4-C6H12, J. Chem. Phys. 55 (1971), 2831.10.1063/1.1676501Search in Google Scholar

[294] A. Sparasci and H. J. V. Tyrrell, Thermal diffusion and convective stability. Experimental study of the carbon tetrachloride+chlorobenzene system, J. Chem. Soc. Faraday Trans. 1 71 (1975), 42.10.1039/f19757100042Search in Google Scholar

[295] S. C. Yi and R. L. Rowley, Heats of transport from diffusion thermo effect measurements on binary liquid mixtures of carbon tetrachloride with benzene, toluene, 2-propanone, n-hexane, and n-octane, J. Chem. Phys. 87 (1987), 7208.10.1063/1.453364Search in Google Scholar

[296] N.-Y. R. Ma and A. L. Beyerlein, The 2h thermal diffusion isotope effect in benzene and methanol, J. Chem. Phys. 78 (1983), 7010.10.1063/1.444651Search in Google Scholar

[297] W. M. Rutherford, Effect of mass distribution on the isotopic thermal diffusion of benzene, J. Chem. Phys. 86 (1987), 5217.10.1063/1.452646Search in Google Scholar

[298] W. M. Rutherford, Separation of isotopically substituted liquids in the thermal diffusion column, J. Chem. Phys. 59 (1973), 6061.10.1063/1.1679971Search in Google Scholar

[299] W. M. Rutherford, Effect of carbon and hydrogen isotopic substitutions on the thermal diffusion of benzene, J. Chem. Phys. 90 (1989), 602.10.1063/1.456462Search in Google Scholar

[300] W. M. Rutherford, Effect of mass distribution on the isotopic thermal diffusion of substituted benzenes, J. Chem. Phys. 81 (1984), 6136.10.1063/1.447567Search in Google Scholar

[301] W. M. Rutherford, Isotopic thermal diffusion of carbon disulfide in the liquid phase, J. Chem. Phys. 86 (1987), 397.10.1063/1.452577Search in Google Scholar

[302] G. Wittko and W. Köhler, Universal isotope effect in thermal diffusion of mixtures containing cyclohexane and cyclohexane-d12, J. Chem. Phys. 123 (2005), 014506.10.1063/1.1948368Search in Google Scholar

[303] G. Wittko and W. Köhler, Influence of isotopic substitution on the diffusion and thermal diffusion coefficient of binary liquids, Eur. Phys. J. E 21 (2006), 283.10.1140/epje/i2006-10066-4Search in Google Scholar

[304] S. Hartmann, W. Köhler and K. I. Morozov, The isotope Soret effect in liquids: a quantum effect at room temperatures, Soft Matter 8 (2012), 1355.10.1039/C1SM06722BSearch in Google Scholar

[305] D. Reith and F. Müller-Plathe, On the nature of thermal diffusion in binary Lennard-Jones liquids, J. Chem. Phys. 112 (2000), 2436.10.1063/1.480809Search in Google Scholar

[306] G. Galliero, B. Duguay, J.-P. Caltagirone and F. Montel, Thermal diffusion sensitivity to the molecular parameters of a binary equimolar mixture, a non-equilibrium molecular dynamics approach, Fluid Phase Equilib. 208 (2003), 171.10.1016/S0378-3812(03)00030-XSearch in Google Scholar

[307] P. Polyakov, J. Luettmer-Strathmann and S. Wiegand, Study of the thermal diffusion behavior of alkane/benzene mixtures by thermal diffusion forced Rayleigh scattering experiments and lattice model calculations, J. Phys. Chem. B 110 (2006), 26215.10.1021/jp065825vSearch in Google Scholar PubMed

[308] P. Blanco, M. M. Bou-Ali, J. K. Platten, P. Urteaga, J. A. Madariaga and C. Santamaria, Determination of thermal diffusion coefficient in equimolar n-alkane mixtures: empirical correlations, J. Chem. Phys. 129 (2008), 174504.10.1063/1.2945901Search in Google Scholar PubMed

[309] J. A. Madariaga, C. Santamaria, M. M. Bou-Ali, P. Urteaga and D. A. D. Mezquia, Measurement of thermodiffusion coefficient in n-alkane binary mixtures: composition dependence, J. Phys. Chem. B 114 (2010), 6937.10.1021/jp910823cSearch in Google Scholar PubMed

[310] D. A. de Mezquia Gonzalez. Estudio de los Fenomenos de transporte termo-hidrodinamicos de no equilibrio en mezclas liquidas, Ph.D. thesis, Mondragon University, 2012.Search in Google Scholar

[311] K. I. Morozov, Soret effect in molecular mixtures, Phys. Rev. E 79 (2009), 031204.10.1103/PhysRevE.79.031204Search in Google Scholar PubMed

[312] B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2001.Search in Google Scholar

[313] R. D. Astumian, The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments, Am. J. Phys. 74 (2006), 683.10.1119/1.2205883Search in Google Scholar

[314] S. Duhr and D. Braun, Thermophoretic depletion follows Boltzmann distribution, Phys. Rev. Lett. 96 (2006), 168301.10.1103/PhysRevLett.96.168301Search in Google Scholar PubMed

[315] E. Bringuier, From mechanical motion to Brownian motion, thermodynamics and particle transport theory, Eur. J. Phys. 29 (2008), 1243.10.1088/0143-0807/29/6/013Search in Google Scholar

[316] A. Würger, Is Soret equilibrium a non-equilibrium effect? C. R. Mec. 341 (2013), 438.10.1016/j.crme.2013.02.006Search in Google Scholar

[317] J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York, 1964.Search in Google Scholar

[318] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970.Search in Google Scholar

[319] S. Villain-Guillot and A. Würger, Thermal diffusion in a binary liquid due to rectified molecular fluctuations, Phys. Rev. E 83 (2011), 030501(R).10.1103/PhysRevE.83.030501Search in Google Scholar PubMed

[320] E. Bringuier and A. Bourdon, Colloid transport in nonuniform temperature, Phys. Rev. E 67 (2003), 011404.10.1103/PhysRevE.67.011404Search in Google Scholar PubMed

[321] E. Bringuier and A. Bourdon, Colloid thermophoresis as a non-proportional response, J. Non-Equilib. Thermodyn. 32 (2007), 221.10.1515/JNETDY.2007.014Search in Google Scholar

[322] E. Bringuier and A. Bourdon, Kinetic theory of colloid thermodiffusion, Phys A 385 (2007), 9.10.1016/j.physa.2007.06.011Search in Google Scholar

[323] J. Lenglet, A. Bourdon, J. C. Bacri and G. Demouchy, Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments, Phys. Rev. E 65 (2002), 031408.10.1103/PhysRevE.65.031408Search in Google Scholar PubMed

[324] R. Haase, Zur thermodynamisch-phänomenologischen Theorie der Thermodiffusion, Z. Phys. 127 (1950), 1.10.1007/BF01338979Search in Google Scholar

[325] L. J. T. M. Kempers, A thermodynamic theory of the Soret effect in a multicomponent liquid, J. Chem. Phys. 90 (1989), 6541.10.1063/1.456321Search in Google Scholar

[326] L. J. T. M. Kempers, A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid, J. Chem. Phys. 115 (2001), 6330.10.1063/1.1398315Search in Google Scholar

[327] P. Artola, B. Rousseau, G. Galliero, New theoretical model for thermal diffusion: Prigogine’s approach revisited! in: Thermal Nonequilibrium: Lecture Notes of the 8th International Meeting on Thermodiffusion, S. Wiegand, W. Köhler, and J. K. G. Dhont, editors, Vol. 3 of Schriften Des Forschungszentrums Jülich Forschungszentrum Jülich GmbH, Jülich (2008).Search in Google Scholar

[328] P.-A. Artola, B. Rousseau and G. Galliero, A new model for thermal diffusion: kinetic approach, J. Am. Chem. Soc. 130 (2008), 10963.10.1021/ja800817fSearch in Google Scholar

[329] M. Eslamian and M. Z. Saghir, Dynamic thermodiffusion model for binary liquid mixtures, Phys. Rev. E 80 (2009), 011201.10.1103/PhysRevE.80.011201Search in Google Scholar

[330] A. Würger, Thermal diffusion in binary mixtures: the role of irreversibility, J. Phys.: Condens. Matter 26 (2014), 035105.Search in Google Scholar

[331] M. G. Gonzalez-Bagnoli, A. A. Shapiro and E. H. Stenby, Evaluation of the thermodynamic models for the thermal diffusion factor, Philos. Mag. 83 (2003), 2171.10.1080/0141861031000113280Search in Google Scholar

[332] F. S. Gaeta, Radiation pressure theory of thermal diffusion in liquids, Phys. Rev. 182 (1969), 289.10.1103/PhysRev.182.289Search in Google Scholar

[333] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., Pergamon Press, Oxford, 1987.Search in Google Scholar

[334] A. Parola and R. Piazza, A microscopic approach to thermophoresis in colloidal suspensions, J. Phys.: Condens. Matter 17 (2005), S3639.10.1088/0953-8984/17/45/059Search in Google Scholar

[335] R. Piazza, Thermophoresis: moving particles with thermal gradients, Soft Matter 4 (2008), 1740.10.1039/b805888cSearch in Google Scholar

[336] M. Yang and M. Ripoll, Driving forces and polymer hydrodynamics in the Soret effect, J. Phys.: Condens. Matter 24 (2012), 195101.10.1088/0953-8984/24/19/195101Search in Google Scholar

[337] E. Ruckenstein, Can phoretic motions be treated as interfacial tension gradient driven phenomena, J. Colloid Interface Sci. 83 (1981), 77.10.1016/0021-9797(81)90011-4Search in Google Scholar

[338] A. Parola and R. Piazza, Particle thermophoresis in liquids, Eur. Phys. J. E 15 (2004), 255.10.1140/epje/i2004-10065-5Search in Google Scholar PubMed

[339] R. Piazza, Thermal forces: colloids in temperature gradients, J. Phys.: Condens. Matter 16 (2004), S4195.10.1088/0953-8984/16/38/032Search in Google Scholar

[340] D. Lüsebrink, M. Yang and M. Ripoll, Thermophoresis of colloids by mesoscale simulations, J. Phys.: Condens. Matter 24 (2012), 284132.10.1088/0953-8984/24/28/284132Search in Google Scholar PubMed

[341] M. Yang and M. Ripoll, Thermophoretically induced flow field around a colloidal particle, Soft Matter 9 (2013), 4661.10.1039/C3SM27949ASearch in Google Scholar

[342] Y. Leroyer and A. Würger, Soret motion in non-ionic binary molecular mixtures, J. Chem. Phys. 135 (2011), 054102.10.1063/1.3615954Search in Google Scholar PubMed

[343] M. E. Schimpf and S. N. Semenov, Latex particle thermophoresis in polar solvents, J. Phys. Chem. B 105 (2001), 2285.10.1021/jp0005221Search in Google Scholar

[344] S. Semenov and M. Schimpf, Thermophoresis of dissolved molecules and polymers: consideration of the temperature-induced macroscopic pressure gradient, Phys. Rev. E 69 (2004), 011201.10.1103/PhysRevE.69.011201Search in Google Scholar PubMed

[345] H. Brenner, Elementary kinematical model of thermal diffusion in liquids and gases, Phys. Rev. E 74 (2006), 036306.10.1103/PhysRevE.74.036306Search in Google Scholar PubMed

[346] H. Brenner, Self-thermophoresis and thermal self-diffusion in liquids and gases, Phys. Rev. E 82 (2010), 036325.10.1103/PhysRevE.82.036325Search in Google Scholar PubMed

[347] A. Würger, Molecular-weight dependent thermal diffusion in dilute polymer solutions, Phys. Rev. Lett. 102 (2009), 078302.10.1103/PhysRevLett.102.078302Search in Google Scholar PubMed

[348] K. I. Morozov, Thermodiffusion in magnetic colloids, J. Magn. Magn. Mater. 201 (1999), 248.10.1016/S0304-8853(99)00087-6Search in Google Scholar

[349] J. K. G. Dhont, Thermodiffusion of interacting colloids. I. A statistical thermodynamics approach, J. Chem. Phys. 120 (2004), 1632.10.1063/1.1633546Search in Google Scholar

[350] J. K. G. Dhont, Thermodiffusion of interacting colloids. II. A microscopic approach, J. Chem. Phys. 120 (2004), 1642.10.1063/1.1633547Search in Google Scholar

[351] J. K. G. Dhont, S. Wiegand, S. Duhr and D. Braun, Thermodiffusion of charged colloids: Single-particle diffusion, Langmuir 23 (2007), 1674.10.1021/la062184mSearch in Google Scholar

[352] K. I. Morozov and W. Köhler, Thermophoresis of polymers: non-draining vs. draining coil, Langmuir 30 (2014), 6571.10.1021/la501695nSearch in Google Scholar

[353] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, New York, 1992.Search in Google Scholar

[354] R. J. Bearman and J. G. Kirkwood, Statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems, J. Chem. Phys. 28 (1958), 136.10.1063/1.1744056Search in Google Scholar

[355] F. A. Lindemann, Note on the vapour pressure and affinity of isotopes, Philos. Mag. 38 (1919), 173.10.1080/14786440708635937Search in Google Scholar

[356] G. Jancso and W. A. Van Hook, Condensed phase isotope effects (especially vapor pressure isotope effects), Chem. Rev. 74 (1974), 689.10.1021/cr60292a004Search in Google Scholar

[357] G. Jancso, L. P. N. Rebelo and W. A. Van Hook, Isotope effects in solution thermodynamics: excess properties in solutions of isotopomers, Chem. Rev. 93 (1993), 2645.10.1021/cr00024a004Search in Google Scholar

[358] P.-A. Lund, O. F. Nielsen and E. Praestgaard, Comparison of depolarized Rayleigh-wing scattering and far-infrared absorption in molecular liquids, Chem. Phys. 28 (1978), 167.10.1016/0301-0104(78)85047-2Search in Google Scholar

[359] B. Hafskjold, T. Ikeshoji and S. K. Ratkje, On the molecular mechanism of thermal diffusion in liquids, Mol. Phys. 80 (1993), 1389.10.1080/00268979300103101Search in Google Scholar

[360] J. M. Kincaid and B. Hafskjold, Thermal diffusion factors for the Lennard-Jones/spline system, Mol. Phys. 82 (1994), 1099.10.1080/00268979400100784Search in Google Scholar

[361] D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976.Search in Google Scholar

[362] D. Evans and G. Morris, Statistical Mechanics of Nonequilibrium Liquids, Cambridge University Press, Cambridge, 2008.10.1017/CBO9780511535307Search in Google Scholar

[363] A. Perronace, C. Leppla, F. Leroy, B. Rousseau and S. Wiegand, Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane-n-decane mixtures, J. Chem. Phys. 116 (2002), 3718.10.1063/1.1436473Search in Google Scholar

[364] P.-A. Artola and B. Rousseau, Microscopic interpretation of a pure chemical contribution to the Soret effect, Phys. Rev. Lett. 98 (2007), 125901.10.1103/PhysRevLett.98.125901Search in Google Scholar PubMed

[365] G. Galliero, M. Bugel, B. Duguay and F. Montel, Mass effect on thermodiffusion using molecular dynamics, J. Non-Equilib. Thermodyn. 32 (2007), 251.10.1515/JNETDY.2007.017Search in Google Scholar

[366] P.-A. Artola and B. Rousseau, Isotopic Soret effect in ternary mixtures: theoretical predictions and molecular simulations, J. Chem. Phys. 143 (2015), 174503.10.1063/1.4934634Search in Google Scholar PubMed

[367] G. Milano and F. Müller-Plathe, Cyclohexane-benzene mixtures: thermodynamics and structure from atomistic simulations, J. Phys. Chem. B 108 (2004), 7415.10.1021/jp0494382Search in Google Scholar

[368] M. Zhang and F. Müller-Plathe, Reverse nonequilibrium molecular-dynamics calculation of the Soret coefficient in liquid benzene/cyclohexane mixtures, J. Chem. Phys. 123 (2005), 124502.10.1063/1.2042427Search in Google Scholar PubMed

[369] M. Zhang and F. Müller-Plathe, The Soret effect in dilute polymer solutions: influence of chain length, chain stiffness and solvent quality, J. Chem. Phys. 125 (2006), 124903.10.1063/1.2356469Search in Google Scholar PubMed

[370] P. Polyakov, M. Zhang, F. Müller-Plathe and S. Wiegand, Thermal diffusion measurements and simulations of binary mixtures of spherical molecules, J. Chem. Phys. 127 (2007), 014502.10.1063/1.2746327Search in Google Scholar PubMed

[371] C. L. Herren and J. S. Ham, Thermal diffusion coefficient of polystyrene in toluene, J. Chem. Phys. 35 (1961), 1479.10.1063/1.1732067Search in Google Scholar

[372] B. Rauch and G. Meyerhoff, Thermal diffusion of polystyrene in solution, J. Phys. Chem. 67 (1963), 946.10.1021/j100798a521Search in Google Scholar

[373] G. Meyerhoff and B. Rauch, Die thermische Diffusion von Polystyrol in verschiedenen Lösungsmitteln, Makromol. Chem. 127 (1969), 214.10.1002/macp.1969.021270115Search in Google Scholar

[374] F. Brochard and P.-G. de Gennes, Soret effect of flexible macromolecules, C. R. Acad. Sci. Paris, Ser. 2 293 (1981), 1025.Search in Google Scholar

[375] O. Ecenarro, J. A. Madariaga, J. L. Navarro, C. M. Santamaria, J. A. Carrion and J. M. Saviron, Thermogravitational thermal diffusion in liquid polymer solutions, Macromolecules 27 (1994), 4968.10.1021/ma00096a018Search in Google Scholar

[376] W. Köhler, C. Rosenauer and P. Rossmanith, Holographic grating study of mass and thermal diffusion of polystyrene/toluene solutions, Int. J. Thermophys. 16 (1995), 11.10.1007/BF01438953Search in Google Scholar

[377] J. Chan, J. J. Popov, S. Kolisnek-Kehl and D. G. Leaist, Soret coefficients for aqueous polyethylene glycol solutions and some tests of the segmental model of polymer thermal diffusion, J. Solution Chem. 32 (2003), 197.10.1023/A:1022925216642Search in Google Scholar

[378] A. Würger, Thermophoresis in colloidal suspensions driven by Marangoni forces, Phys. Rev. Lett. 98 (2007), 138301.10.1103/PhysRevLett.98.138301Search in Google Scholar PubMed

[379] M. Hartung, J. Rauch and W. Köhler, Thermal diffusion of dilute polymer solutions: the role of solvent viscosity, J. Chem. Phys. 125 (2006), 214904.10.1063/1.2393230Search in Google Scholar PubMed

[380] P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21 (1953), 1272.10.1063/1.1699180Search in Google Scholar

[381] B. H. Zimm, Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys. 24 (1956), 269.10.1063/1.1742462Search in Google Scholar

[382] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986.Search in Google Scholar

[383] E. P. C. Mes, W. T. Kok and R. Tijssen, Prediction of polymer thermal diffusion coefficients from polymer-solvent interaction parameters: comparison with thermal field flow fractioantion and thermal diffusion forced Rayleigh scattering experiments, Int. J. Polym. Anal. Char. 8 (2003), 133.10.1080/10236660304888Search in Google Scholar

[384] E. Bringuier, Thermophoresis of linear polymer chains, C. R. Mec. 339 (2011), 349.10.1016/j.crme.2011.03.013Search in Google Scholar

[385] E. Bringuier, Scaling theory of polymer thermodiffusion, Phys. A 389 (2010), 4545.10.1016/j.physa.2010.06.035Search in Google Scholar

[386] M. E. Schimpf and S. N. Semenov, Polymer thermophoresis in solvents and solvent mixtures, Philos. Mag. 83 (2003), 2185.10.1080/0141861031000107926Search in Google Scholar

[387] W. Enge and W. Köhler, Temperature induced composition changes in a critical polymer blend, ChemPhysChem 5 (2004), 393.10.1002/cphc.200301028Search in Google Scholar PubMed

[388] A. Voit, A. Krekhov, W. Enge, L. Kramer and W. Köhler, Thermal patterning of a critical polymer blend, Phys. Rev. Lett. 94 (2005), 214501.10.1103/PhysRevLett.94.214501Search in Google Scholar PubMed

[389] A. Voit, A. Krekhov and W. Köhler, Laser-induced structures in a polymer blend in the vicinity of the phase boundary, Phys. Rev. E 76 (2007), 011808.10.1103/PhysRevE.76.011808Search in Google Scholar PubMed

[390] W. Köhler, A. Krekhov and W. Zimmermann, Thermal diffusion in polymer blends: Criticality and pattern formation, Adv. Polym. Sci. 227 (2010), 145.10.1007/12_2009_33Search in Google Scholar

[391] J. Kumaki, T. Hashimoto and S. Granick, Temperature gradients induce phase separation in a miscible polymer solution, Phys. Rev. Lett. 77 (1996), 1990.10.1103/PhysRevLett.77.1990Search in Google Scholar PubMed

[392] A. Voit, A. Krekhov and W. Köhler, Quenching a UCST polymer blend into phase separation by local heating, Macromolecules 40 (2007), 9.10.1021/ma062205jSearch in Google Scholar

[393] F. Schwaiger, W. Zimmermann and W. Köhler, Transient cage formation around hot gold colloids dispersed in polymer solutions, J. Chem. Phys. 135 (2011), 224905.10.1063/1.3665935Search in Google Scholar

[394] F. Schwaiger and W. Köhler, Photothermal deformation of a transient polymer network, Macromolecules 46 (2013), 1673.10.1021/ma302665pSearch in Google Scholar

[395] M. Corti, V. Degiorgio, M. Giglio and A. Vendramini, Analysis of macromolecular polydispersity by dynamic light scattering and thermodiffusion, Opt. Commun. 23 (1977), 282.10.1016/0030-4018(77)90327-3Search in Google Scholar

[396] G. Platt, T. Vongvanich and R. L. Rowley, The diffusion thermoeffect in ternary nonelectrolyte liquid mixtures, J. Chem. Phys. 77 (1982), 2113.10.1063/1.444017Search in Google Scholar

[397] D. G. Leaist and H. Lu, Conductometric determination of the Soret coefficients of a ternary mixed electrolyte. Reversed thermal diffusion of sodium chloride in aqueous sodium hydroxide solutions, J. Phys. Chem. 94 (1990), 447.10.1021/j100364a077Search in Google Scholar

[398] J. P. Larre, J. K. Platten and G. Chavepeyer, Soret effects in ternary systems heated from below, Int. J. Heat Mass Transfer 40 (1997), 545.10.1016/0017-9310(96)00125-1Search in Google Scholar

[399] K. B. Haugen and A. Firoozabadi, On measurement of thermal diffusion coefficients in multicomponent mixtures, J. Chem. Phys. 122 (2005), 014516.10.1063/1.1829033Search in Google Scholar PubMed

[400] B.-A. S. M. Mounir and J. K. Platten, Metrology of the thermodiffusion coefficients in a ternary system, J. Non-Equilib. Thermodyn. 30 (2005), 385.10.1515/JNETDY.2005.027Search in Google Scholar

[401] I. I. Ryzhkov and V. M. Shevtsova, On the cross-diffusion and Soret effect in multicomponent mixtures, Microgravity Sci. Technol. 21 (2009), 37.10.1007/s12217-008-9081-9Search in Google Scholar

[402] T. J. Jaber, Y. Yan, S. Pan and M. Z. Saghir, Theoretical prediction of thermal diffusion coefficients for ternary hydrocarbon mixtures based on the irreversible thermodynamics theory, Acta Astronaut. 65 (2009), 1158.10.1016/j.actaastro.2009.03.021Search in Google Scholar

[403] M. Eslamian, M. Z. Saghir and M. M. Bou-Ali, Investigation of the Soret effect in binary, ternary and quaternary hydrocarbon mixtures: new expressions for thermodiffusion factors in quaternary mixtures, Int. J. Thermal Sci. 49 (2010), 2128.10.1016/j.ijthermalsci.2010.06.015Search in Google Scholar

[404] M. Eslamian, M. Z. Saghir and M. M. Bou-Ali, Erratum: In (Eslamian et al., Int. J. Thermal Sci. 49 (2010) 2128) thermodiffusion coefficients of the second and third components have been swapped. Affected are Tabs. 1–3. Private communication.10.1016/j.ijthermalsci.2010.06.015Search in Google Scholar

[405] S. Srinivasan and M. Z. Saghir, Measurements on thermodiffusion in ternary hydrocarbon mixtures at high pressure, J. Chem. Phys. 131 (2009), 124508.10.1063/1.3236745Search in Google Scholar PubMed

[406] J. M. Ortiz de Zárate, C. Giraudet, H. Bataller and F. Croccolo, Non-equilibrium fluctuations induced by the Soret effect in a ternary mixture, Eur. Phys. J. E 37 (2014), 77.10.1140/epje/i2014-14077-2Search in Google Scholar PubMed

[407] V. Shevtsova, C. Santos, V. Sechenyh, J. C. Legros and A. Mialdun, Diffusion and Soret in ternary mixtures. Preparation of the DCMIX2 experiment on the ISS, Microgravity Sci. Technol. 25 (2014), 275.10.1007/s12217-013-9349-6Search in Google Scholar

[408] S. Srinivasan and M. Z. Saghir, Thermodiffusion in ternary hydrocarbon mixtures. Part 1: n-dodecane/isobutylbenzene/tetralin, J. Non-Equilib. Thermodyn. 36 (2011), 243.10.1515/JNETDY.2011.015Search in Google Scholar

[409] A. Ahadi, S. V. Varenbergh and M. Z. Saghir, Measurement of the Soret coefficients of a ternary hydrocarbon mixture in low gravity environment, J. Chem. Phys. 138 (2013), 204201.10.1063/1.4802984Search in Google Scholar PubMed

[410] A. Mialdun and V. Shevtsova, Communication: New approach for analysis of thermodiffusion coefficients in ternary mixtures, J. Chem. Phys. 138 (2013), 161102.10.1063/1.4802987Search in Google Scholar PubMed

[411] V. Sechenyh, J. C. Legros and V. Shevtsova, Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane, J. Chem. Thermodyn. 62 (2013), 64.10.1016/j.jct.2013.01.026Search in Google Scholar

[412] M. Larrañaga, M. M. Bou-Ali, I. Lizarraga, J. A. Madariaga and C. Santamaria, Soret coefficients of the ternary mixture 1,2,3,4-tetrahydronaphtalene + isobutylbenzene + n-dodecane, J. Chem. Phys. 143 (2015), 024202.10.1063/1.4926654Search in Google Scholar PubMed

[413] M. Gebhardt and W. Köhler, Soret, thermodiffusion, and mean diffusion coefficients of the ternary mixture n-dodecane + isobutylbenzene + 1,2,3,4-tetrahydronaphtalene, J. Chem. Phys. 143 (2015), 164511.10.1063/1.4934718Search in Google Scholar PubMed

[414] V. Sechenyh, J. C. Legros and V. Shevtsova, Measurements of optical properties in binary and ternary mixtures containing cyclohexane, toluene, and methanol, J. Chem. Eng. Data 57 (2012), 1036.10.1021/je201277dSearch in Google Scholar

[415] A. Mialdun and V. Shevtsova, Temperature dependence of Soret and diffusion coefficients for toluene--cyclohexane mixture measured in convection-free environment, J. Chem. Phys. 143 (2015), 224902.10.1063/1.4936778Search in Google Scholar PubMed

[416] M. M. Bou-Ali, A. Ahadi, D. A. de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, et al., Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin + isobutylbenzene + n-dodecane with 0.8-0.1-0.1 mass fraction, Eur. Phys. J. E 38 (2015), 30.10.1140/epje/i2015-15030-7Search in Google Scholar PubMed

[417] O. Khlybov, I. Ryzhkov and T. Lyubimova, Contribution to the benchmark for ternary mixtures: measurement of diffusion and Soret coefficients in 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane onboard the ISS, Eur. Phys. J. E 38 (2015), 29.10.1140/epje/i2015-15029-0Search in Google Scholar PubMed

[418] M. Larrañaga, M. M. Bou-Ali, D. A. de Mezquia, D. A. S. Rees, J. A. Madariaga, C. Santamaria, et al., Contribution to the benchmark for ternary mixtures: determination of Soret coefficients by the thermogravitational and the sliding symmetric tubes techniques, Eur. Phys. J. E 38 (2015), 28.10.1140/epje/i2015-15028-1Search in Google Scholar PubMed

[419] Q. Galand and S. Van Vaerenbergh, Contribution to the benchmark for ternary mixtures: measurement of diffusion and Soret coefficients of ternary system tetrahydronaphtalene-isobutylbenzene-n-dodecane with mass fractions 80-10-10 at 25°C, Eur. Phys. J. E 38 (2015), 26.10.1140/epje/i2015-15026-3Search in Google Scholar PubMed

[420] A. Ahadi and M. Ziad Saghir, Contribution to the benchmark for ternary mixtures: transient analysis in microgravity conditions, Eur. Phys. J. E 38 (2015), 25.10.1140/epje/i2015-15025-4Search in Google Scholar PubMed

[421] J. C. Legros, Y. Gaponenko, A. Mialdun, T. Triller, A. Hammon, C. Bauer, et al. Investigation of Fickian diffusion in the ternary mixtures of water-ethanol-triethylene glycol and its binary pairs, Phys. Chem. Chem. Phys. 17 (2015), 27713.10.1039/C5CP04745ESearch in Google Scholar

[422] K. Maeda, N. Shinyashiki, S. Yagihara, S. Wiegand and R. Kita, Ludwig-Soret effect of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol: temperature, molecular weight, and hydrogen bond effect, J. Chem. Phys. 143 (2015), 124504.10.1063/1.4931115Search in Google Scholar

[423] D. R. Caldwell and S. A. Eide, Soret coefficient and isothermal diffusivity of aqueous solutions of five principal salt constituents of seawater, Deep-Sea Res. A 28 (1981), 1605.10.1016/0198-0149(81)90100-XSearch in Google Scholar

[424] G. D. Leaist, Soret coefficients of mixed electrolytes, J. Solution Chem. 19 (1990), 1.10.1007/BF00650639Search in Google Scholar

[425] L. Helden, R. Eichhorn and C. Bechinger, Direct measurement of thermophoretic forces, Soft Matter 11 (2015), 2379.10.1039/C4SM02833CSearch in Google Scholar

[426] S. Duhr and D. Braun, Why molecules move along a temperature gradient, PNAS 103 (2006), 19678.10.1073/pnas.0603873103Search in Google Scholar PubMed PubMed Central

[427] P. Reineck, C. J. Wienken and D. Braun, Thermophoresis of single stranded DNA, Electrophoresis 31 (2010), 279.10.1002/elps.200900505Search in Google Scholar PubMed

[428] Y. Kishikawa, S. Wiegand and R. Kita, Temperature dependence of Soret coefficient in aqueous and nonaqueous solutions of pullulan, Biomacromolecules 11 (2010), 740.10.1021/bm9013149Search in Google Scholar PubMed

[429] P. Blanco, H. Kriegs, B. Arlt and S. Wiegand, Thermal diffusion of oligosaccharide solutions: the role of chain length and structure, J. Phys. Chem. B 114 (2010), 10740.10.1021/jp104534mSearch in Google Scholar PubMed

[430] S. Iacopini, R. Rusconi and R. Piazza, The macromolecular tourist: universal temperature dependence of thermal diffusion in aqueous colloidal suspensions, Eur. Phys. J. E 19 (2006), 59.10.1140/epje/e2006-00012-9Search in Google Scholar PubMed

[431] A. Ahadi, C. Giraudet, H. Jawad, F. Croccolo, H. Bataller and M. Z. Saghir, Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers, Int. J. Thermal Sci. 80 (2014), 108.10.1016/j.ijthermalsci.2014.02.003Search in Google Scholar

[432] I. Inzoli, J. M. Simon, D. Bedeaux and S. Kjelstrup, Thermal diffusion and partial molar enthalpy variations of n-butane in silicalite-1, J. Phys. Chem. B 112 (2008), 14937.10.1021/jp804778uSearch in Google Scholar PubMed

[433] J. Kuhn, R. S. F. Kapteijn, S. Kjelstrup and J. Gross, A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane, J. Membr. Sci. 330 (2009), 388.10.1016/j.memsci.2009.01.019Search in Google Scholar

[434] J. M. Ortiz de Zárate, J. Sengers, D. Bedeaux and S. Kjelstrup, Concentration fluctuations in nonisothermal reaction-diffusion systems, J. Chem. Phys. 127 (2007), 034501.10.1063/1.2746326Search in Google Scholar PubMed

[435] D. Bedeaux, J. M. Ortiz de Zárate, I. Pagonabarraga, J. V. Sengers and S. Kjelstrup, Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case, J. Chem. Phys. 135 (2011), 124516.10.1063/1.3640010Search in Google Scholar PubMed

[436] L. Sprenger, A. Lange and S. Odenbach, Thermodiffusion in concentrated ferrofluids: a review and current experimental and numerical results on non-magnetic thermodiffusion, Phys. Fluids 25 (2013), 122002.10.1063/1.4848656Search in Google Scholar

[437] L. Sprenger, A. Lange and S. Odenbach, Thermodiffusion in concentrated ferrofluids: experimental and numerical results on magnetic thermodiffusion, Phys. Fluids 26 (2014), 022001.10.1063/1.4864107Search in Google Scholar

[438] E. Blums, G. Kronkalns, A. Mezulis and V. Sints, Non-isothermal mass transfer of ferrocolloids through porous membrane, J. Magn. Magn. Mater. 323 (2011), 1334.10.1016/j.jmmm.2010.11.041Search in Google Scholar

[439] E. Blums, V. Sints, G. Kronkalns and A. Mezulis, Non-isothermal separation of ferrofluid particles through grids: abnormal magnetic Soret effect, C. R. Mec. 341 (2013), 348.10.1016/j.crme.2013.01.009Search in Google Scholar

Received: 2016-3-29
Revised: 2016-5-9
Accepted: 2016-5-27
Published Online: 2016-7-12
Published in Print: 2016-7-1

©2016 by De Gruyter Mouton

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2016-0024/html?lang=en
Scroll to top button