Abstract
- We consider the inverse problem of identification of memory kernels in one-dimensional heat flow are dealt with where the kernel is represented by a finite sum of products of known spatially-dependent functions and unknown time-dependent functions. As additional conditions for the inverse problems observations of both heat flux and temperature are prescribed. Using the Laplace transform method we prove an existence and uniqueness theorem for the memory kernel.
Published Online: 2013-09-07
Published in Print: 2001-08
© 2013 by Walter de Gruyter GmbH & Co.
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Contents
- Carleman’s formulas for the Laplace and Poisson equations with operator coefficients
- On local solvability of inverse dissipative scattering problems
- Sourcewise representation of solutions to nonlinear operator equations in a Banach space and convergence rate estimates for a regularized Newton’s method
- Iterative methods for an inverse heat conduction problem
- Identification of a special class of memory kernels in one-dimensional heat flow
- Nonlinear inverse problems for elliptic equations
- Inverse problem for interior spectral data of the Sturm – Liouville operator
Articles in the same Issue
- Contents
- Carleman’s formulas for the Laplace and Poisson equations with operator coefficients
- On local solvability of inverse dissipative scattering problems
- Sourcewise representation of solutions to nonlinear operator equations in a Banach space and convergence rate estimates for a regularized Newton’s method
- Iterative methods for an inverse heat conduction problem
- Identification of a special class of memory kernels in one-dimensional heat flow
- Nonlinear inverse problems for elliptic equations
- Inverse problem for interior spectral data of the Sturm – Liouville operator