Startseite Mathematik On the solvability of an inverse problem for the Burgers equation with an integral overdetermination condition in a nonlinearly degenerating domain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the solvability of an inverse problem for the Burgers equation with an integral overdetermination condition in a nonlinearly degenerating domain

  • Muvasharkhan T. Jenaliyev ORCID logo , Sergey I. Kabanikhin ORCID logo , Medina Kassen ORCID logo und Madi G. Yergaliyev ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. Januar 2025

Abstract

The paper considers an inverse problem and a direct problem for the Burgers equation in a domain with movable boundaries. With the help of an additional condition, a formula is obtained for determining the desired function from a direct problem for the loaded Burgers equation for the solvability of which we require a condition on the functions according to which the boundaries of the domain change. The solvability of direct problems is proved using a priori estimates and the methods of Faedo–Galerkin and functional analysis.

MSC 2020: 35K55; 35R30; 35R37

Funding statement: The research of Muvasharkhan Jenaliyev and Madi Yergaliyev was supported by the grants No. AP23485369 (2024–2026) and No. BR20281002 (2023–2025) of the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier/Academic, Amsterdam, 2003. Suche in Google Scholar

[2] J. Apraiz, A. Doubova, E. Fernández-Cara and M. Yamamoto, Some inverse problems for the Burgers equation and related systems, Commun. Nonlinear Sci. Numer. Simul. 107 (2022), Article ID 106113. 10.1016/j.cnsns.2021.106113Suche in Google Scholar

[3] I. Bağlan, A. O. Akdemir and M. A. Dokuyucu, Inverse coefficient problem for quasilinear pseudo-parabolic equation by Fourier method, Filomat 37 (2023), no. 21, 7217–7230. 10.2298/FIL2321217BSuche in Google Scholar

[4] I. Baglan and F. Kanca, Two-dimensional inverse quasilinear parabolic problem with periodic boundary condition, Appl. Anal. 98 (2019), no. 8, 1549–1565. 10.1080/00036811.2018.1434149Suche in Google Scholar

[5] M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer Monogr. Math., Springer, Tokyo, 2017. 10.1007/978-4-431-56600-7Suche in Google Scholar

[6] X. Cheng, Z. Fu and B. Wetton, Equivalent formulations of the oxygen depletion problem, other implicit moving boundary value problems, and implications for numerical approximation, SIAM J. Appl. Math. 83 (2023), no. 1, 52–78. 10.1137/21M1419167Suche in Google Scholar

[7] S. De Lillo, Moving boundary problems for the Burgers equation, Inverse Problems 14 (1998), no. 1, 1–4. 10.1088/0266-5611/14/1/001Suche in Google Scholar

[8] A. Hasanov Hasanoğlu and V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer, Cham, 2017. 10.1007/978-3-319-62797-7Suche in Google Scholar

[9] M. S. Hussein, D. Lesnic, V. L. Kamynin and A. B. Kostin, Direct and inverse source problems for degenerate parabolic equations, J. Inverse Ill-Posed Probl. 28 (2020), no. 3, 425–448. 10.1515/jiip-2019-0046Suche in Google Scholar

[10] N. Huzyk, Inverse problem of determining the coefficients in a degenerate parabolic equation, Electron. J. Differential Equations 2014 (2014), Paper No. 172. Suche in Google Scholar

[11] N. Huzyk, Inverse free boundary problems for a generally degenerate parabolic equation, J. Inverse Ill-Posed Probl. 23 (2015), no. 2, 103–119. 10.1515/jiip-2011-0016Suche in Google Scholar

[12] V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Sci. 127, Springer, New York, 2006. Suche in Google Scholar

[13] M. Jenaliyev, M. Ramazanov and M. Yergaliyev, On the coefficient inverse problem of heat conduction in a degenerating domain, Appl. Anal. 99 (2020), no. 6, 1026–1041. 10.1080/00036811.2018.1518523Suche in Google Scholar

[14] M. Jenaliyev, M. Ramazanov and M. Yergaliyev, On the numerical solution of one inverse problem for a linearized two-dimensional system of Navier-Stokes equations, Opuscula Math. 42 (2022), no. 5, 709–725. 10.7494/OpMath.2022.42.5.709Suche in Google Scholar

[15] M. T. Jenaliyev, M. A. Bektemesov and M. G. Yergaliyev, On an inverse problem for a linearized system of Navier–Stokes equations with a final overdetermination condition, J. Inverse Ill-Posed Probl. 31 (2023), no. 4, 611–624. 10.1515/jiip-2022-0065Suche in Google Scholar

[16] S. I. Kabanikhin, Inverse and Ill-Posed Problems, Inverse Ill-posed Probl. Ser. 55, Walter de Gruyter, Berlin, 2012. 10.1515/9783110224016Suche in Google Scholar

[17] I. V. Kravchenko, V. V. Kravchenko and S. M. Torba, Solution of parabolic free boundary problems using transmuted heat polynomials, Math. Methods Appl. Sci. 42 (2019), no. 15, 5094–5105. 10.1002/mma.5483Suche in Google Scholar

[18] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris, 1968. Suche in Google Scholar

[19] D. V. Lukyanenko, A. A. Borzunov and M. A. Shishlenin, Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front, Commun. Nonlinear Sci. Numer. Simul. 99 (2021), Article ID 105824. 10.1016/j.cnsns.2021.105824Suche in Google Scholar

[20] D. V. Lukyanenko, I. V. Prigorniy and M. A. Shishlenin, Some features of solving an inverse backward problem for a generalized Burgers’ equation, J. Inverse Ill-Posed Probl. 28 (2020), no. 5, 641–649. 10.1515/jiip-2020-0078Suche in Google Scholar

[21] D. V. Lukyanenko, M. A. Shishlenin and V. T. Volkov, Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data, Commun. Nonlinear Sci. Numer. Simul. 54 (2018), 233–247. 10.1016/j.cnsns.2017.06.002Suche in Google Scholar

[22] S. L. Mitchell, N. P. McInerney and S. B. G. O’Brien, Approximate solution techniques for the sorption of a finite amount of swelling solvent in a glassy polymer, Appl. Math. Model. 92 (2021), 624–650. 10.1016/j.apm.2020.11.018Suche in Google Scholar

[23] P. M. Nguyen and L. H. Nguyen, A numerical method for an inverse source problem for parabolic equations and its application to a coefficient inverse problem, J. Inverse Ill-Posed Probl. 28 (2020), no. 3, 323–339. 10.1515/jiip-2019-0026Suche in Google Scholar

[24] Y. H. Ou, A. Hasanov and Z. H. Liu, Inverse coefficient problems for nonlinear parabolic differential equations, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 10, 1617–1624. 10.1007/s10114-008-6384-0Suche in Google Scholar

[25] M. A. Rincon and A. Scardua, The Stefan problem with moving boundary, Bol. Soc. Parana. Mat. (3) 26 (2008), no. 1–2, 91–106. 10.5269/bspm.v26i1-2.7412Suche in Google Scholar

[26] V. G. Romanov, Investigation Methods for Inverse Problems, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002. 10.1515/9783110943849Suche in Google Scholar

[27] M. Yergaliyev, M. Jenaliyev, A. Romankyzy and A. Zholdasbek, On an inverse problem with an integral overdetermination condition for the Burgers equation, J. Math. Mech. Comp. Sci. 117 (2023), 24–41. 10.26577/JMMCS.2023.v117.i1.03Suche in Google Scholar

Received: 2024-09-26
Accepted: 2024-12-15
Published Online: 2025-01-13
Published in Print: 2025-02-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2024-0067/pdf
Button zum nach oben scrollen