Abstract
The paper considers the scattering problem for the first-order system of hyperbolic equations on the half-axis with a nonhomogeneous boundary condition. This problem models the phnomennon of wave propagation in a nonstationary medium where an incoming wave unaffected by a potential field. The scattering operator on the half-axis with a nonzero boundary condition is defined and the uniqueness of the inverse scattering problem (the problem of finding the potential with respect to scattering operator) is studied.
Funding statement: This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09260126).
References
[1] A. S. Fokas and M. J. Ablowitz, On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane, J. Math. Phys. 25 (1984), no. 8, 2494–2505. 10.1063/1.526471Search in Google Scholar
[2] I. C. Gohberg and M. G. Kreĭn, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, American Mathematical Society, Providence, 1970. Search in Google Scholar
[3] M. I. Ismailov, Inverse nonstationary scattering for the linear system of the 3-wave interaction problem in the case of two incident waves with the same velocity, Wave Motion 47 (2010), no. 4, 205–216. 10.1016/j.wavemoti.2009.11.003Search in Google Scholar
[4] M. I. Ismailov, Inverse scattering problem for nonstationary Dirac-type systems on the plane, J. Math. Anal. Appl. 365 (2010), no. 2, 498–509. 10.1016/j.jmaa.2009.10.068Search in Google Scholar
[5] M. I. Ismailov, Inverse scattering problem for the nonstationary Dirac equation on the half-plane, J. Inverse Ill-Posed Probl. 24 (2016), no. 3, 221–231. 10.1515/jiip-2014-0039Search in Google Scholar
[6] T. S. Kalmenov and S. I. Kabanikhin and A. Les, The Sommerfeld problem and inverse problem for the Helmholtz equation, J. Inverse Ill-Posed Probl. 29 (2021), no. 1, 49–64. 10.1515/jiip-2020-0033Search in Google Scholar
[7] T. S. Kalmenov, A. V. Rogovoy and S. I. Kabanikhin, Hadamard’s example and solvability of the mixed Cauchy problem for the multidimensional Gellerstedt equation, J. Inverse Ill-Posed Probl. 30 (2022), no. 6, 831–904. 10.1515/jiip-2022-0023Search in Google Scholar
[8] S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP 38 (1974), 248–253. Search in Google Scholar
[9] L. P. Nizhnik, Inverse Scattering Problems for Hyperbolic Equations (in Russian), “Naukova Dumka”, Kiev, 1991. Search in Google Scholar
[10] L. P. Nizhnik and N. S. Iskenderov, An inverse nonstationary scattering problem for a hyperbolic system of three first-order equations on the half-axis, Ukrainian Math. J. 42 (1990), no. 7, 825–832. 10.1007/BF01062086Search in Google Scholar
[11]
L.-Y. Sung and A. S. Fokas,
Inverse problem for
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Stability properties for a class of inverse problems
- Inverse scattering problem for nonstrict hyperbolic system on the half-axis with a nonzero boundary condition
- Identification of the time-dependent source term in a Kuramoto–Sivashinsky equation
- Direct numerical algorithm for calculating the heat flux at an inaccessible boundary
- The game model with multi-task for image denoising and edge extraction
- On the X-ray transform of planar symmetric tensors
- Inverse vector problem of diffraction by inhomogeneous body with a piecewise smooth permittivity
- Acquiring elastic properties of thin composite structure from vibrational testing data
- Inverse nodal problem for diffusion operator on a star graph with nonhomogeneous edges
- Convergence analysis of Inexact Newton–Landweber iteration with frozen derivative in Banach spaces
- A projected gradient method for nonlinear inverse problems with 𝛼ℓ1 − 𝛽ℓ2 sparsity regularization
- Correctness and regularization of stochastic problems
- A layer potential approach to inverse problems in brain imaging
- Inverse problem for Dirac operators with two constant delays
Articles in the same Issue
- Frontmatter
- Stability properties for a class of inverse problems
- Inverse scattering problem for nonstrict hyperbolic system on the half-axis with a nonzero boundary condition
- Identification of the time-dependent source term in a Kuramoto–Sivashinsky equation
- Direct numerical algorithm for calculating the heat flux at an inaccessible boundary
- The game model with multi-task for image denoising and edge extraction
- On the X-ray transform of planar symmetric tensors
- Inverse vector problem of diffraction by inhomogeneous body with a piecewise smooth permittivity
- Acquiring elastic properties of thin composite structure from vibrational testing data
- Inverse nodal problem for diffusion operator on a star graph with nonhomogeneous edges
- Convergence analysis of Inexact Newton–Landweber iteration with frozen derivative in Banach spaces
- A projected gradient method for nonlinear inverse problems with 𝛼ℓ1 − 𝛽ℓ2 sparsity regularization
- Correctness and regularization of stochastic problems
- A layer potential approach to inverse problems in brain imaging
- Inverse problem for Dirac operators with two constant delays