Abstract
We introduce the special and general projectivity groups attached to a simplex 𝐹 of a thick, irreducible, spherical building of simply laced type.
If the residue of 𝐹 is irreducible, we determine the permutation group of both projectivity groups of 𝐹, acting on the residue of 𝐹 and show that the special projectivity group determines the precise action of the Levi subgroup of a parabolic subgroup on the corresponding residue.
This reveals three special cases for the exceptional types
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: EXC 2044 – 390685587
Funding source: Marsden Fund
Award Identifier / Grant number: UOA-2122
Funding statement: The first author is funded by the Claussen-Simon-Stiftung and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics–Geometry–Structure. All authors were supported by the New Zealand Marsden Fund grant UOA-2122 of the second author. This work is part of the PhD project of the first author.
Acknowledgements
The authors are grateful to Gernot Stroth for an illuminating discussion concerning the structure and action of Levi complements in Chevalley groups and to the referee for some very helpful comments and suggesting different approaches at various points, in particular the approach using algebraic groups in Section 8.1.
-
Communicated by: Christopher W. Parker
References
[1] P. Abramenko and K. S. Brown, Buildings. Theory and Applications, Grad. Texts in Math. 248, Springer, New York, 2008. 10.1007/978-0-387-78835-7Search in Google Scholar
[2] A. Borel, Linear Algebraic Groups, Grad. Texts in Math. 126, Springer, New York, 1969. Search in Google Scholar
[3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Act. Sci. Indust. 1337, Hermann, Paris, 1968. Search in Google Scholar
[4] F. Buekenhout and A. M. Cohen, Diagram Geometry Related to Classical Groups and Buildings, Ergeb. Math. Grenzgeb. (3) 57, Springer, Heidelberg, 2013. 10.1007/978-3-642-34453-4Search in Google Scholar
[5] S. Busch and H. Van Maldeghem, A characterisation of lines in finite Lie incidence geometries of classical type, Discrete Math. 349 (2026), no. 2, Article ID 114711. 10.1016/j.disc.2025.114711Search in Google Scholar
[6] S. Busch and H. Van Maldeghem, Lines and opposition in finite Lie incidence geometries of exceptional type, in progress. Search in Google Scholar
[7] R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math. 28, John Wiley & Sons, London, 1972. Search in Google Scholar
[8] R. W. Carter, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, Wiley Classics Lib., John Wiley & Sons, London, 1985. Search in Google Scholar
[9] C. Chevalley, The Algebraic Theory of Spinors, Columbia University, New York, 1954. 10.7312/chev93056Search in Google Scholar
[10] B. N. Cooperstein, Some geometries associated with parabolic representations of groups of Lie type, Canad. J. Math. 28 (1976), no. 5, 1021–1031. 10.4153/CJM-1976-100-9Search in Google Scholar
[11] B. N. Cooperstein, A characterization of some Lie incidence structures, Geom. Dedicata 6 (1977), no. 2, 205–258. 10.1007/BF00181461Search in Google Scholar
[12] C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1–59. 10.1090/S0002-9947-1976-0422440-8Search in Google Scholar
[13]
A. De Schepper, N. S. N. Sastry and H. Van Maldeghem,
Split buildings of type
[14]
A. De Schepper, N. S. N. Sastry and H. Van Maldeghem,
Buildings of exceptional type in buildings of type
[15] A. De Schepper, J. Schillewaert and H. Van Maldeghem, On the generating rank and embedding rank of the hexagonic Lie incidence geometries, Combinatorica 44 (2024), no. 2, 355–392. 10.1007/s00493-023-00075-ySearch in Google Scholar
[16] A. De Schepper and H. Van Maldeghem, On inclusions of exceptional long root geometries of type 𝖤, Innov. Incidence Geom. 20 (2023), no. 2–3, 247–293. 10.2140/iig.2023.20.247Search in Google Scholar
[17] J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27–45. 10.24033/bsmf.1345Search in Google Scholar
[18] J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer, Berlin, 1963. 10.1007/978-3-662-59144-4Search in Google Scholar
[19] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Math. Surveys Monogr. 40, American Mathematical Society, Providence, 1994. 10.1090/surv/040.1Search in Google Scholar
[20] N. Knarr, Projectivities of generalized polygons, Ars Combin. 25B (1988), 265–275. Search in Google Scholar
[21] B. Mühlherr, H. P. Petersson and R. M. Weiss, Descent in Buildings, Ann. of Math. Stud.190, Princeton University, Princeton, 2015. 10.1515/9781400874019Search in Google Scholar
[22] B. Mühlherr and M. Ronan, Local to global structure in twin buildings, Invent. Math. 122 (1995), no. 1, 71–81. 10.1007/BF01231439Search in Google Scholar
[23] S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Res. Notes Math. 110, Pitman, Boston, 1984. Search in Google Scholar
[24] E. E. Shult, Points and Lines: Characterizing the Classical Geometries, Universitext, Springer, Heidelberg, 2011. 10.1007/978-3-642-15627-4Search in Google Scholar
[25] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968. Search in Google Scholar
[26]
Y. Stepanov,
On an octonionic construction of the groups of type
[27] B. Temmermans, J. A. Thas and H. Van Maldeghem, Domesticity in projective spaces, Innov. Incidence Geom. 12 (2011), 141–149. 10.2140/iig.2011.12.141Search in Google Scholar
[28] J. Tits, Sur la géométrie des 𝑅-espaces, J. Math. Pures Appl. (9) 36 (1957), 17–38. Search in Google Scholar
[29] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. 10.2307/1970394Search in Google Scholar
[30] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math. 386, Springer, Berlin, 1974. Search in Google Scholar
[31] J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977), no. 3, 283–295. 10.1007/BF01390082Search in Google Scholar
[32] H. Van Maldeghem, Generalized Polygons, Monogr. Math. 93, Birkhäuser, Basel, 1998. 10.1007/978-3-0348-0271-0Search in Google Scholar
[33]
H. Van Maldeghem,
Symplectic polarities of buildings of type
[34] H. Van Maldeghem and M. Victoor, Some combinatorial and geometric constructions of spherical buildings, Surveys in Combinatorics 2019, London Math. Soc. Lecture Note Ser. 456, Cambridge University, Cambridge (2019), 237–265. 10.1017/9781108649094.009Search in Google Scholar
[35] H. Van Maldeghem and M. Victoor, On Severi varieties as intersections of a minimum number of quadrics, Cubo 24 (2022), no. 2, 307–331. 10.56754/0719-0646.2402.0307Search in Google Scholar
© 2026 Walter de Gruyter GmbH, Berlin/Boston